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Resumen

Resumen de la tesis de Carlos Eduardo Sanchez Torres, presentada como requisito

parcial para la obtención de la Licenciatura en Ciencias Computacionales. Ensenada,

Baja California, México. Noviembre de 2023.

Evolufy: Enhancing Mexican Equity Portfolio Selection with Genetic Algorithms

and Time Series Forecasting for Data-Driven Investment Strategies

Proponemos desarrollar una biblioteca para la selección de carteras de inversión

que comprendan acciones mexicanas, con el objetivo de democratizar las decisiones

de inversión basadas en datos. Esta herramienta aprovecha los principios de la

Teoŕıa Moderna de Portafolios, un modelo de optimización que equilibra riesgo y

retorno. Emplea algoritmos genéticos para navegar eficientemente el amplio espacio

de búsqueda de combinaciones de carteras potenciales. Además, los modelos de

series temporales mejoran el modelo de Markowitz mediante la predicción de la

eficiencia del mercado. La integración de técnicas de aprendizaje automático en la

optimización de carteras ofrece estrategias de inversión más perspicaces al tener en

cuenta las tendencias históricas.

Resumen aprobado por:

Dr. Luis Miguel Pellegrin Zazueta
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Abstract

We propose developing a library for selecting investment portfolios comprising Mexi-

can shares, aiming to democratize data-driven investment decisions. This tool lever-

ages Modern Portfolio Theory principles, an optimization model balancing risk and

return. It employs genetic algorithms to navigate the vast search space of poten-

tial portfolio combinations efficiently. Additionally, time series models augment

Markowitz’s model by forecasting market efficiency. Integrating machine learning

techniques into portfolio optimization offers more insightful investment strategies by

considering historical trends.

Keywords: multi-objective problems, optimization algorithms, evolutionary com-

putation, investment portfolio optimization, web
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Chapter 1

Introduction

Portfolio optimization is a crucial task in investment management, where the per-

fect balance between maximizing returns and minimizing the risk of investor users

is sought. Financial institutions relentlessly aim to maximize their returns while

maintaining an acceptable level of risk, making the selection of the best portfolio an

essential aspect of fund management. Since [47] confirms the validity and efficiency

of evolutionary algorithms, employing superior techniques will yield better-applied

results, as this project intends to demonstrate. The complexity of this problem in-

creases exponentially when considering various constraints and multiple objectives,

such as risk tolerance, tax regulations, market forecasting, risk factors, and macroe-

conomic factors, as discussed in [11]. Moreover, the size of the search space can be

enormous, especially in modern finance, where investors can choose from thousands

of assets. To solve this problem, several algorithms have been developed, primarily

in academia [11]. However, few of these algorithms and models use enough available

information. Also, many of these algorithms do not consider realistic constraints,

which can lead to unfeasible solutions in practice [3, 28, 49].

In this work, we propose developing Evolufy, an open-source library designed

IX



Chapter 1. Introduction X

to solve a constrained investment portfolio optimization problem (CPOP). See more

about CPOP in [2]. This is an applied project, guided by a quantitative method, and

is intended for developers in the finance industry, investors, stock market speculators,

managers, and other researchers interested in portfolio optimization.

In the following sections, the reader will be introduced to how to choose a port-

folio based on Modern Portfolio Theory (MPT) introduced by [33, 45] and find it a

solution on Multiobjective Evolutionary Algorithm (MOEA) with Time Series, and

constructing a solution with Python, Darts and Genetic Algorithms. We know which

are the most frequently used multiobjective evolutionary algorithms (MOEAs) and

their performance metrics for measure the quality of multiobjective optimization

solution by [2, 11, 28]. See Table 1.1.

Table 1.1. Types of MOEAs and Their Effectiveness in Solving CPOPs. This table
shows the percentage of papers that uses the algorithm and their corresponding
success scores.

MOEA type Research Percentage (%) Score

MOPSO 70
NSGAII 29.17 47
SPEA2 25.00 51
PESA 16.67
SPEA 8.33
PAES 8.33
MOGA 4.17
NPGA2 4.17
IBEA 4.17
SPEA2SDE 56
MOEADDRA 54
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1.1 Problem Description and Statement

Allocate a fixed amount of capital among n assets such as stocks, funds, bonds, and

so forth in order to find the efficient frontier: maximizing the expected return and

minimizing the risk –the covariance matrix of returns– from recent data with a li-

brary. So, it’s constrained multi-objective optimization problem.

We hypothesize that Evolufy which utilizes evolutionary algorithms, Modern

Portfolio Theory, and time series, can provide an efficient and universally accessible

solution for multi-objective constrained portfolio optimization. We anticipate that

this approach will outperform current methods in terms of efficiency and feasibility,

thereby offering end-users a superior tool for investment management.

1.2 Goals

The project aims at constructing Evolufy, an open-source software library in Python

for constrained multi-objective optimization by means of evolutionary algorithms

to solve a Markowitz’s portfolio optimization problem with time series forecasting.

It includes objectives like implementing the algorithms, benchmarking the results

obtained, and suggesting improvements in space, time, and clarity about them. For

that, we propose the below specific goals:

1. Develop and document a genetic algorithm and time series forecasting library

for investment portfolio optimization.

2. Conduct tests and performance analysis of the implemented algorithms, using

Mexican stock market data and indexes.



Chapter 2

Background

In this chapter, we present Mexican stock portfolio management and delve into fi-

nancial market concepts, various investment theories, and, more specifically, Modern

Portfolio Theory (MPT), which is our investing method for choosing securities. Since

MPT is essentially an optimization model, we will describe what constitutes an opti-

mization model, explain what an optimizer is, and clarify why the Genetic Algorithm

fits our needs as an optimizer for finding portfolios. In a later section, we will outline

what a time serie is, the autoregressive models upon which we’re going to build our

library, and discuss its capabilities.

The novelty of the present work lies in the selection of Mexican stocks using

Modern Portfolio Theory through a novel configuration of a Genetic Algorithm with

deep learning to forecast the returns. These components come together to form

Evolufy, which aims to provide a computer-aided portfolio selection library for de-

fensive investors, someone who is not willing to invest the time and effort into actively

selecting securities. Specifically, our focus is on making intelligent investments that

can be simplified to enable rational decision-making in the market employing Modern

Portfolio Theory (MPT).

XII
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This thesis does not concern itself with the daily stock fluctuations required for

technical analysis. Instead, it adheres to the definition outlined in Security Analy-

sis, aiming to make rational decisions that, through comprehensive analysis, promise

the safety of principal and an appropriate return, or equivalently, the decision min-

imize risk and seeks maximum utility. Modern Portfolio Theory (MPT) provides

the foundation for such an analytical approach. On the other hand, if you’re an

aggressive investor, pursuing a Chartered Financial Analyst (CFA) designation may

make sense.

2.1 Financial markets in a nutshell

Cash+Math ≈ Finance

Mr. Market, who is hungry for

cash.

1 Our needs and desires are the driving forces behind our human actions. To fulfill

these needs, we must organize ourselves, allocating resources and dividing labor in

a manner that we refer to as the economy. In today’s Occident, the majority

of people operate within an intervened market economy. This system allocates

resources through a complex interplay of private decisions and state intervention,

using prices derived from trading as signals to guide the utilization of resources.

Within a market economy, transactions occur in both product markets, which deal

with manufactured goods and services, and factor markets, encompassing labor and

capital. Some authors refer to the former as the real economy and the latter as the

paper economy.

1Unless otherwise indicated, most of the definitions in this chapter are obtained from Fabozzi
et al. (2010) and Brealey et al. (2007).
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The paper economy provides three essential functions to the real economy: (1) it

discovers the price of assets through trading and exchange; (2) it offers a mechanism

to sell securities, providing some degree of liquidity to traders in the secondary

market; and (3) it reduces transaction costs, including search and information costs.

The former represents explicit costs, while the latter encompasses costs associated

with assessing both the amount and the likelihood of the expected cash flow.

This thesis focuses specifically on common stocks, which form an essential compo-

nent of financial markets. Here, stocks are considered an asset, and are thus traded

in a factor market designed specifically for financial assets. The broader financial

system encompasses not only these markets but also various institutions and infras-

tructural elements that together facilitate a comprehensive economic framework.

For instance, Alice and Bob trade assets, which are possessions that hold value to

them. More precisely, Alice sell her possession because her considers more valuable

Bob’s cash, and Bob buys for he considers more valuable the Alice’s possession than

his money. These assets can be either tangible or intangible. Tangible assets have

physical substance, while intangible assets consist of legal claims without physical

substance but with the promise of benefit. Specifically, a financial asset (also referred

to as a financial instrument or security) represents an intangible asset that carries

the promise of future cash. We can identify assets by a International Securities

Identification Number.

When Alice agrees to entitle future cash payments to Bob for any given reason

(whether debt or equity), she becomes the issuer of the security, while Bob takes on

the role of the trader (either a speculator or investor). As the trader, Bob becomes

the owner of the security. Bob and Alice may agree on a fixed or varying amount. On

the one hand, a debt instrument means they agree on a fixed payment. On the other
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hand, if they agree on an equity instrument (also referred to as a residual claim),

this obliges Alice, the issuer, to pay Bob, the holder’s security, an amount based on

earnings. Like all human actions, Alice and Bob’s choice of security depends on what

fulfills their needs. When their transaction occurred, a price arose in the market,

sending a signal about the value. However, a profound question arises: Did Alice

and Bob exercise diligence in valuating the asset rationally? We can’t guarantee that

they behaved rationally, but we can assume they had incentives to make decisions

that benefited themselves. Therefore, we can say that the intrinsic value differs from

the price a good deal of the time, but their diligence provides us with plenty of

information. Additionally, no one may uncover the intrinsic value, as doing so would

imply having an extensive amount of information about the future. Consequently,

a secondary function of the economy, when both parties engage in exchanges, is the

redistribution of risk among the participants.

If we assume both are rational and other things held constant, Bob would make

the decision to buy Alice’s asset based on the present value of the expected cash flow.

In other words, he analyzes the stream of payments over time, taking into account

uncertainty and discount rate, to determine the instrument’s present value and its

expected rate of return. Uncertainty arises from various risks associated with the

payments, such as inflation, default, or currency risk. However, in the real world, Bob

and Alice are not alone; they coexist with a multitude of other market participants,

and some of them have the power to alter the market significantly. These include

a diverse range of entities such as retail investors; financial institutions like pension

funds, insurance companies, mutual funds, commercial banks, and savings and loan

associations; households; business entities such as corporations and partnerships;

stock exchanges like NASDAQ, the New York Stock Exchange, or the Mexican Stock



Chapter 2. Background XVI

Exchange; national and local governments; supranational agencies like the World

Bank, European Investment Bank, and the Asian Development Bank; and regulators

such as the Securities and Exchange Commission or the ’Comisión Nacional Bancaria

y de Valores ’. Essentially, anyone can become an issuer or an investor, engaging in

the exchange of various classes of securities and their derivatives, including common

stocks, bonds, cash equivalents, real estate, commodities, private equities, hedge

funds, venture capital, real assets, and currencies (e.g., crypto or forex). Figure 2.1

provides different classifications of the financial market (i.e., markets where securities

are exchanged). Interestingly, colleges, including public universities, are participants

in the financial market, e.g. see UABC [12, 50].

One of the biggest inquiries for traders is finding the right securities at their

respective fair prices. In an efficient market, these prices reflect the aggregate infor-

mation collected by all market participants. Is the existing market truly efficient?

The answer to this question often depends on whom you ask and their stance on

the degree of efficiency, giving rise to the term Efficient Market Hypothesis (EMH)

(see [17] and [42]). This hypothesis categorizes market efficiency into three model of

consistencies: weak, semi-strong, and strong. The weak form asserts that historical

prices is already factored into current prices, while the semi-strong form contends

that all publicly available information is reflected. The strong form goes even further,

arguing that all information relevant for price formation is reviewed, even insider in-

formation. A consequence of the EMH with rational expectation is the degree to

which it becomes challenging to ’beat the market’ such that no investor would be

able to consistently achieve higher returns than others by utilizing any type of in-

formation advantage. Related to Market Hypothesis, it is the Rational Expectation.

If all participants have the same information, all participants are rational, possess
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Figure 2.1. Classification of Financial Markets. This figure illustrates the various
methods for classifying financial markets.

equal bargaining power, and there are no risks, Bob wouldn’t be able to consistently

profit. He wouldn’t be able to sell his assets at a higher price because the rest would

believe there’s no new information to justify such a price increase. Information in

this context arrives in the form of announcements, including annual earnings, stock

splits, interest rates, taxes, geopolitical events, scientific insights, macroeconomic

variables, and cataclysms, among others. Since this thesis pertains to computer sci-

ence, we measure information in bits, which allows us to process data from different
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sources, provided we understand the method involved.

The one’s position upon EHM and other economy premises depends on economy

theories you assume such as American, Austrian, MMT, Chicago, Classical, Institu-

tional, Keynesian, Marxist, Monetarist, Neoclassical, and New institutional. They

offer us different perspectives on how economic works and how we improve its results.

However, we can assume six fundamental principles of finance [29], independent of

our school of thought:

• No Arbitrage Principle: There’s no such thing as a free lunch.

• Non-Satiation Principle: Other things being equal, individuals prefer more

money to less.

• Impatience Principle: People prefer money now rather than later.

• Risk Aversion Principle: Individuals tend to avoid risk.

• Self-Interest Principle: All agents act with their own self-interest at heart.

• Market Equilibrium Principle: Financial market prices adjust to balance sup-

ply and demand. Additionally, risk-sharing and frictions play pivotal roles in

financial innovation.

Since the fundamental challenges of finance involve asset valuation and manage-

ment, one can work in the financial market and achieve success using skills ranging

from arithmetic to complex math. Regardless of the technique we choose, we must

answer the fundamental questions: How are financial assets valued? How should

financial assets be valued? How do financial markets determine asset values? How
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well do financial markets work? How much should I save/spend? What should I

buy/sell? When should I buy/sell? How should I finance the transaction?

Addressing these challenges is particularly difficult due to the inherent involve-

ment of time and risk. Without considering these factors, the core analytical chal-

lenges could simply be narrowed down to macroeconomic analyses. In fact, if we

could effectively address these factors for the entire economy, a shift from a market-

based economy to a centralized one would be conceivable. The temporal aspect

pertains to disparities in cash flows across different time periods, forecasting the fu-

ture, and other time series issues, such as segmentation, estimation, and explanation

[5].

By trivially reducing our task to a valuation task, we invest in real assets that

are worth more than they cost constrained with the available budget. We’re going

to explore our framework to valuate on the section 3.1. We can think of detecting

intrinsic value as a time-series segmentation task. Will the market reflect the intrinsic

value at some point? By definition, intrinsic value changes over time due to shifts in

the economy and the flow of information. However, by applying the adaptive market

hypothesis, we can envision the market attempting to approximate the intrinsic value

when sufficient incentives are present. This approach assumes that the market price

will eventually ”correct” toward the intrinsic value, although it may deviate from

it again. Borrowing terminology from distributed systems, the consistency model

is eventual; in this context, how information spreads in the market and how the

current market price approximates the intrinsic value can be modeled as a distributed

system where agents doesn’t acknowledge the same data at the same moment but

someday the system is going to achieve the consistency again.We will analyze this in

Section 2.3, drawing on those insights. Additionally, while other approaches have
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been proposed for the reader’s acknowledgment, they are not the focus of this work.

For example, Gómez-Águila et al. suggests using the Hurst exponent, a fractal-based

analysis method, to understand the stock market’s long memory.

Our second task is reducing risk. Life would be too easy if we could achieve

high returns with zero risk. However, we must optimize our strategy to secure high

returns with low risk. We show how in the section 2.1.2.1. After a brief discussion,

we can be sure that the financial markets are the lifeblood of our economies. Now,

we’re going to talk about the most hectic asset in the market: stocks.

2.1.1 Common Stocks

Our earlier discourse on financial markets serves as a primer for delving into the

intricacies of stocks. At the heart of stocks lie shares, each signifying a fragment

of ownership in the issuing entity. Simplifying further, think of these shares as

distinct slices of stock presented by a corporation. While it’s customary for issuers

to be public corporations gracing the listings of stock exchanges, it’s not unusual

for private entities to step into the limelight via an Initial Public Offering (IPO).

One can gauge the magnitude of a stock through its market capitalization, a simple

arithmetic of multiplying share count with its respective price. Although the broader

spectrum of stocks spans both common and preferred types, our lens zooms into the

latter, rooted in the foundation of a semi-strong efficient market hypothesis. Finance

industry classifies stocks as equity, that is, they provide variable income, contrary

to fixed income. When we trade stocks we claim them by seasoning in secondary

market, except in IPO when for first time a private company offer to the public its

shares. For private companies to list their shares on the BMV (stands for Bolsa

Mexicana de Valores), certain requirements need to be met: a minimum of 200
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shareholders, three consecutive years of profit, and the public must hold at least

15% of the company’s shares.

It’s worth noting the subtle distinctions: common stocks come with voting priv-

ileges, earning them the label of ”voting shares.” In contrast, their preferred coun-

terparts often lack these rights, gaining them the designation of ”ordinary shares.”

Transitioning to the realm of stock exchanges, these trading hubs –be it a securi-

ties exchange or bourse– serve as bustling arenas for securities transactions. In this

maze, a unique ticker symbol acts as a beacon for each issuer, a courtesy extended by

the exchange. Moreover, the exchange plays gatekeeper, delineating which corporate

players can step into the stock issuance arena.

Traders, in this vast ecosystem, are privy to a treasure trove of information,

spanning Dividends, Intraday data, Indices, Rates, to Commodities. And as we

anchor our assumptions in a semi-strong EMH, we believe that these nuggets of

information seamlessly weave into the tapestry of stock prices, a theme recurrent in

our prior discussions. While there’s some debate about whether stock prices reflect

a company’s value, it’s certain that owning a stock means owning an interest in a

business. Strictly speaking, the stock price doesn’t affect the company because it

doesn’t receive any returns from the secondary market, unless the board chooses to

issue more shares.

What income mechanisms can one expect from investments in the

Stock Exchange? The types of securities found on the Mexican Stock Exchange

(BMV) are similar to those on other stock exchanges. These include stocks, deben-

tures, government and corporate bonds, warrants, and derivatives. Similarly to other

exchanges, the BMV provides typical trading facilities, making securities informa-

tion accessible to the public and promoting fair market practices. With the ’Bolsa
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Institucional de Valores’ as its rival, our focus will be on stocks listed on the Mexican

Stock Exchange.

The type of income, its frequency, its taxation, and the option for reinvestment

all depend on the specific security you choose. In stocks, you might receive income

through capital transactions and dividends. Capital transactions occur upon sale,

while dividends are paid periodically. Taxation varies by jurisdiction; for exam-

ple, in Mexico, safe harbor provisions offer tax benefits to maquiladoras. Dividend

Reinvestment Plans allow for the automatic reinvestment of dividends.

A basic rule in finance is that the valuation of an asset is equal to the present

value of future cash flows. The challenge, of course, lies in the uncertainty of the

future, especially since stocks offer variable returns. This means that companies

provide different returns each time, necessitating effective risk management.

In the stock market, it’s crucial to consider returns and cash flow policies. Over

time, you might receive dividends, which represent a positive cash flow for you.

Additionally, it’s important to be mindful of the costs and fees. The act of buying

and selling assets invariably comes with these expenses, resulting in a negative cash

flow. As asset values fluctuate, periodic ”rebalancing” of your portfolio may be

necessary to ensure optimal allocations, potentially leading to further positive or

negative cash flows.

The trading strategy informs us about the type of income, market, and policies.

On the other hand, trading tactics tell us how to execute those operations in the

market. In stock markets, if our income policy dictates transactions based primarily

on price, that is, the return is based on the difference between the start and end

of a movement. This approach is based on two scenarios: one where we believe the

price is lower than it should be, and another where we think the price is higher
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than it should be. For the latter scenario, various tactics can be employed, such

as short selling, purchasing put options, investing in inverse funds or inverse ETFs,

using spreads and other option strategies, engaging in arbitrage, and pairs trading.

For the former scenario, strategies include buying stocks (taking a long position),

call options, leveraged ETFs, investing on margin, earning dividends, and aiming for

long-term capital gains.

After choosing a trading strategy, we, as individual investors, interact with the

stock exchange through both traditional and web-based brokers. Today, both types

of brokers allow us to operate in the market. However, traditional brokers typically

require large account sizes, whereas web-based brokers offer functionalities that en-

able interaction with the market through GUIs and APIs. The BMV-SENTRA

Equities System facilitates brokers in conducting market operations. The BMV au-

thorizes brokers to work with this system upon receiving a subscription payment.

We describe how we trade in the market in the Figure 2.2. The BMV is a small

exchange, which consists only 143 companies, compared to for example NYSE which

has 5000 companies. So, applying our classification system as seen in Figure 2.1,

we classify the stocks of BMV as part of the Mexican secondary equity market with

variable incomes, mainly national companies which are situated in a emerging coun-

try with a Closing Cross System. In a closing cross system, the closing price of a

stock is determined by taking the weighted average price of the stock based on the

last trades that occur in the final moments of the trading day. This is contrary to an

auction system, where buyers and sellers submit their orders, and these are matched

at a specific time to determine the final price.
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Figure 2.2. How to Buy Stocks on the Mexican Stock Exchange: This sequence
diagram provides the answer by illustrating the roles and their interactions.

2.1.2 On Portfolio management

Res tantum valet quantum vendi

potest.

Seneca

Many people aspire to accumulate wealth rapidly, but they soon discover the
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complications inherent in such a pursuit. So, it’s wise to protect our trade adventures

with the fruits of certainty so that they can withstand losses. So, we ought to

allocate our resources in line with our objectives based on a framework. According

to Graham and McGowan [20], these resources can be classified as investing and

speculating strategies that traders employ to operate in the market. Investors aim

to gain a satisfactory return through deep analysis, which must ensure the safety of

the principal. In contrast, speculators involve purchasing an asset with the hope of

realizing a short-term gain, based mainly on technical analysis and price changes.

It’s important to remember that all security returns are contingent upon future

events, and thus success largely hinges on your ability to predict these outcomes.

But given the inherent uncertainties, how can we best navigate them?

Various trading theories have been devised to mitigate and manage risk, rather

than eradicate it completely. Undue and undesirable risk, however, are aspects of

investing that every portfolio manager seeks to control. Each theory offers unique

perspectives and strategies for managing this uncertainty and achieving profit. We

describe some trading theories in Table 2.1. Note that those are normative theories

because it describes the trader behavior to construct a portfolio; in contract to a

positive theory that describes how the trader behave.

Since all trading returns in some degree depend on future events, and those follow

random walks –meaning that future steps cannot be predicted with 100% accuracy

based on past history– the approaches mentioned earlier provide a framework to

avoid serious blunders [32]. These approaches are mutually exclusive because their

premises, reasoning, and conclusions differ in how they value assets. For instance,

they presuppose different forms of the efficient-market hypothesis or apply the di-

versification principle as a crucial concept. Nevertheless, a portfolio management
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Table 2.1. A Summary of Various Trading Theories: Different strategies have been
developed for asset selection, varying in their market assumptions and decision-
making approaches.

Theory Name Strategy Works

Buy the Rumour & Sell the
Fact

Speculators buy aggressively on
rumors and sell on public an-
nouncement

Brunnermeier [6]

Castle-in-the-Air Theory
(Contrarian strategy)

Agents sell stocks with high past
growth and high expected future
growth, and buy stocks with low
past growth and low expected fu-
ture growth.

Lakonishok et
al. [27], Keynes
[25]

Constant Stock-Bond Ratio
Theory

A passive investor sets a stock-
/bond ratio, such as 70/30 or
80/20 (or the inverse), ignoring
the current market situation.

Weston [51]

Cybernetic Analysis Agents apply digital signal-
processing techniques to forecast
and explain the market.

Ehlers [14]

Deep Learning Utilizes specific architectures
(e.g., RNN or Transformer) to
analyze a set of securities.

Olorunninmbe
and Viktor [38]

Firm Foundation Theory
(Value investing)

Investors looks for an intrinsic
value by Profitability, Leverage,
Liquidity, Source of Funds, and
Operating Efficiency.

Graham et al.
[21], Piotroski
[41]

Markowitz Portfolio Se-
lection Theory

Select a portfolio using an opti-
mization model. In this thesis, we
explain what the model consists
of.

Markowitz [34]
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consists the choosing the theory considering the investor’s situation and its goals

and make rational decisions on the market allocating investor resources to choose

the right securities (i.e. a portfolio); you must also consider how investments align

with your risk profile, trading time horizon, asset allocation strategy (stock vs bond,

etc.), management style (active vs passive), and tax situation.

Thus, we have chosen to employ Modern Portfolio Theory because it offers op-

timal solutions for manager selection, guaranteed investment contracts, and value

at risk assessments [15] –properties that are more challenging to replicate in other

theories.

2.1.2.1 Modern Portfolio Theory

Despite criticisms of Modern Portfolio Theory (MPT) by different participants [7,

23, 37], it fits our needs as previously described. We expect that the experience

from index, mutual, and pension funds, which employ MPT as their core procedure

to manage portfolios, will be evidence to consider regarding its importance. For

instance, Gil [18] concluded that it could serve to improve AFORES’ results since

SIEFORES apply passive strategies.

So, we must assist Bob, who is a rational investor and therefore seeks to minimize

the level of unsystematic risk λ ∈ R+ given portfolio return E[Rp] he is willing to

accept. MPT provides a model for finding the efficient portfolio x that Bob seeks,

where it defines a utility function representing the need for low risk and high returns

as follows (see [34, 43, 44]):

min
x

U(x) = risk − returns (2.1)
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The classic MPT employs a mean-variance analysis, defining risk as the variance

of the portfolio, denoted as var(Rp), and returns as the expected returns, repre-

sented by λE[Rp]. It’s important to note that deriving this estimator is a distinct

task, typically tackled by another method, often CAPM, which will be detailed later.

Therefore, we update our utility function accordingly:

min
x

U(x) = risk − returns = var(Rp)− λE[Rp] (2.2)

Also the classic MPT defines the variance of portfolio as xTΣx and the returns

as λE[Rp] = xTΣx where x a vector of weights, Σ represent the covariance matrix,

R be the vector the expected returns where each entry is the expected return E[Ri]

of the asset i. Then, xTΣx gives the variance of portfolio return, RTx denotes the

expected return on the portfolio such that E[Rp] = RTx =
∑

xiE[Ri].

In classic MPT, the variance of the portfolio is defined as xTΣx, and the returns

are represented as λE[Rp] = RTx. Here, x is a vector of weights, and Σ represents

the covariance matrix. R is the vector of expected returns, where each entry E[Ri]

corresponds to the expected return of asset i. Thus, xTΣx calculates the variance of

the portfolio’s return, and RTx denotes the expected return on the portfolio, such

that E[Rp] = RTx =
∑

xiE[Ri]. Altogether, we derive the following optimization

model:

min
x

U(x) = risk − returns = var(Rp)− λE[Rp] = xTΣx− λRTx (2.3)

The model includes the constraint that all weights must be fully assigned, as

expressed by the following equation:
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J1,n · x = 1,x ∈ Rn (2.4)

Visually, as shown in Figure 2.3, the trade-off between risk and returns forms

a bullet-shaped curve. In this context, we aim for the north-eastern solution on

the curve, which represents low risk (with risk represented on the x-axis) and high

returns (with returns represented on the y-axis).

Figure 2.3. MPT states how you minimize the risk (standard deviation) and max-
imize the expected return. The blue color represents the efficient frontier, which is
what we’re looking for. In particular, U(w) is the best value for the risk λ = 1.

When you have the weak constraint x ∈ Rn you allow short selling. When you

have a stronger policy, for instance, x ∈ [0,∞)n you don’t allow that behavior.
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Samuelson and Nordhaus [46] approximates risk as the variability of an entity (e.g.

market, or asset), in particular MPT defines risk as securities covariance Cov(Ri, Rj),

so Σ matrix entries are the covariance to each other:

Σn×n =



Cov(R1, R1) Cov(R1, R2) · · · Cov(R1, Rn)

Cov(R2, R1) Cov(R2, R2) · · · Cov(R2, Rn)

...
...

. . .
...

Cov(Rn, R1) Cov(Rn, R2) · · · Cov(Rn, Rn)


(2.5)

=



var(R1, R1) Cov(R1, R2) · · · Cov(R1, Rn)

Cov(R2, R1) var(R2, R2) · · · Cov(R2, Rn)

...
...

. . .
...

Cov(Rn, R1) Cov(Rn, R2) · · · var(Rn, Rn)


(2.6)

In the context of MPT, we could estimate the portfolio expected returns R based

on all available information in the market, which could encompasses various features

of a time series such as news sentimental analysis, macroeconomics variables and

company financial statements. The income policy dictates that the program should

rebalance the portfolio every ∆t time to incorporate the most recent closing prices. In

doing so, he plans to buy and sell shares based on changes in the optimized portfolio.

Additionally, if the value of his portfolio exceeds a predetermined threshold, he will

sell C% of the assets.

When he rebalances his portfolio by assigning new weights, he will maintain a

long position for asset i if its weight xi is greater than 0. Conversely, he will opt

for short selling if the weight of asset i is less than 0. A long position refers to the

purchase of an asset with the expectation that its price will rise over time. When

an investor goes ”long” on an asset, they are essentially expressing a bullish outlook
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on its future price movement. Short selling, often termed ”shorting,” involves an

investor borrowing shares of a stock from a broker to sell them in the open market.

The objective is to buy these shares back at a lower price later, capitalizing on the

stock’s price reduction [5].

This thesis assists to Bob in determining the returns R by valuating assets using

time series and finding an optimums portfolio with optimization algorithms2.

2.2 Optimization models and their Algorithms

Optimization has a long history, dating back millennia. Figures such as Plato (427-

347 BCE) and Aristotle (384-322 BCE) employed optimization to identify the best

societal structure. More recently, George Dantzig (1914-2005) used it for resource

allocation during World War II. In this work, we will focus on multi-objective opti-

mization models from a numerical perspective, culminating in an analysis of a genetic

algorithm approach to quickly find suitable solutions.

Like all effective models, optimization models offer a reliable way to conceptual-

ize a problem. If we encounter a problem that involves finding either the best or the

worst solution, it’s likely that we can represent this problem with an optimization

model and then apply an appropriate algorithm, as suggested by Guttag [22].

In general, the fundamental optimization problem consists of two parts: an ob-

jective function that is to be either maximized or minimized, and a set of constraints

(which could possibly be empty). This can be formally written as follows:

2We use Jupyter Notebook to plot the figure.

https://github.com/sanchezcarlosjr/evolufy/blob/main/notebooks/learn_mpt.ipynb
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minimize f(x) (2.7)

subject to x ∈ χ (2.8)

where x is a design point, χ is the feasible set and it can be discrete or continuous,

and f is the objective function. Among all points in the feasible set χ, the x that

minimizes the objective function is called a solution or minimizer. A particular so-

lution is denoted as x∗. As we work with n-dimensional space, x is a vector and it’s

written as usual:

x = [x1, x2, x3, ..., xi, ..., xn] (2.9)

where xi is called decision variable or design variable.

Easily a minimization problem can be replaced by maximization problem and

vice versa [26]. From

maximize f(x) subject to x ∈ χ (2.10)

to

minimize − f(x) subject to x ∈ χ (2.11)

But what exactly is a feasible set? A feasible set is defined by all constraints, with

each constraint limiting the set of possible solutions. These constraints are expressed

using the symbols ≤, ≥, or = since we are working within the realm of numerical

optimization. Consequently, our problem aligns with the definition of the General

Multiobjective Optimization Problem provided by Coello et al. [11]:
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F (x) = (f1(x), ..., fk(x)) (2.12)

subject to

gi(x) ≤ 0, i = 1, ..., p (2.13)

hj(x) = 0, j = 1, ..., q (2.14)

and our goal is to find global minimizer, a particular x∗ such that f(x∗) ≤ f(x).

However, some multi-objective problems present a tradeoff among costs, perfor-

mance, and time, making it unclear how to prioritize constraints. When searching

for a solution to such problems, we employ Pareto optimality, which represents a

balance among tradeoff objectives. Subsequently, we will describe domination, a

criterion used to compare two solutions. Domination is a relationship such that x

dominates x′ iff fi(x) ≤ fi(x
′) for all i ∈ {1, ...,m} and fi(x) < fi(x

′) for some i.

In simple terms, x is better than x′. The non-dominated set consists of points such

that no element in the set dominates the others in the criterion space. This set is

referred to as the Pareto frontier or Efficient frontier. The criterion space, denoted

as χ, is the image of Υ through f . It is also sometimes referred to as the objective

function space.

2.2.1 Non-dominated set generator

A subproblem involves generating a non-dominated set without a criterion space

to illuminate algorithm behavior and identify the correct efficient frontier for result

comparison. We have constructed a tool by applying monotonic decreasing functions
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and simplex spaces, as noted in the footnote3, to display various efficient frontiers,

as shown in the following Figures: 2.4, 2.5, 2.6, 2.7, and 2.8.

Figure 2.4. Synthetic Efficient Frontier generated with Cos(
∑

aix
i).

Figure 2.5. Synthetic Efficient Frontier generated with −e(
∑

aix
i).

3Non-dominated set generator CLI

https://github.com/sanchezcarlosjr/non-dominated-set-generator-cli/
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Figure 2.6. Synthetic Efficient Frontier generated with the Dirichlet distribution
Dir(1).

Figure 2.7. Synthetic Efficient Frontier generated with
∑

aix
i, .

2.2.2 How can we solve multi-objective problems?

Optimization problems can be solved using enumerative, deterministic, or stochastic

techniques, with genetic algorithms falling into the stochastic category. These heuris-

tic algorithms are our primary focus of study. A non-exhaustive list of optimization



Chapter 2. Background XXXVI

Figure 2.8. Synthetic Efficient Frontier generated with −
√∑

aixi .

techniques can be found in Figure 2.9. The types of Multi-Objective Evolutionary

Algorithms (MOEAs) and their performance scores for solving CPOP are presented

in Table 1.1. Performance is measured using different metrics, as outlined in Table

2.2, with hypervolume being the most popular. Hernández-Gómez [24] developed a

fast, unpublished C framework for calculating these metrics.

The reader will appreciate that the fundamental model of Modern Portfolio The-

ory (MPT) is a quadratic programming problem that can be solved using various

Table 2.2. Performance metrics for indicating the quality of a non-dominated ap-
proximation set

Metric

Hypervolume (HV)
Generational distance (GD)
Inverted generational distance (IGD)
Averaged Hausdorff distance (∆p)
Spread metric ∆
Spacing metric (S)
Coverage of two sets (C)
Riesz s-energy
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Figure 2.9. Different global optimization approaches are illustrated, with the green
path representing the algorithm used in this thesis.

methods, such as Lagrange multipliers or interior-point methods. However, our fo-

cus will be on genetic algorithms. This is because when realistic constraints are ap-

plied, the constrained investment portfolio optimization problem (CPOP) becomes

a quadratic mixed-integer problem (QMIP), which is NP-hard, as detailed in [28].

Despite the principle that ”there ain’t no such thing as a free lunch,” as mentioned in
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[52], choosing the right algorithm to outperform others, as discussed in [2], is critical.

2.2.3 Genetic algorithms

Coello et al. [11] defines a genetic algorithm as a bio-inspired algorithm, using evo-

lution as its guiding metaphor. This algorithm is situated within the broader realm

of global optimization strategies, particularly in the stochastic and evolutionary do-

mains. The categorization of genetic algorithms, along with other approaches, is

illustrated in Figure 2.9. An outline is provided below for further clarity.

Algorithm 1 Basic Genetic Algorithm

1: procedure GeneticAlgorithm
2: population = initialize-population-randomly()
3: while not reaches termination criterion()
4: parents=select-parents-for-the-next-generation-with-its-fitness(population)
5: children = crossover(parents)
6: population = mutate(children)
7:

8: return bestIndividual(population)
9: end procedure

As outlined, the genetic algorithm comprises a population (a generalized compos-

ite data structure as illustrated in Figure 2.10). This population undergoes changes

through a series of strategies, including parent selection, crossover, and mutation.

Specifically, the genetic algorithm performs the following operations on the pop-

ulation:

initialize-population makes a random population from design space and en-

codes it to binary, real, permutation, or tree.

the termination criterion is not true uses it to determine when the

algorithm ends. Perhaps, the easiest way is a generation limit.

select-parents-for-the-next-generation evaluates a decoding population
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Figure 2.10. In genetic algorithms, solutions are encoded as a population, which
consists of chromosomes, each containing specific loci and alleles.

on the objective function, after that procedure applies a fitness function, and then it

makes a mating pool with parents by the canonical selection, roulette wheel selection,

or other. When the procedure always pass the best parent is called elitism.

crossover combines parents from mate pool to make offsprings. Some crossover

schemes are single-point crossover, two-point crossover, uniform crossover.

mutate allows new traits exploration. Some mutation schemes over offsprings

are flipping each bit with small rate for bit-valued chromosomes and Gaussian mu-

tation for real-valued chromosomes.

2.2.3.1 Worked example

A worked example is useful to understand optimization problems and genetic al-

gorithms. In genetic algorithms with elitism, each generation is closer to global

minimum than previous generations how you can appreciate on the Figure 2.11. For

instance, given the next function:
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F (x, y) = min(x2 + y2) (2.15)

subject to

−5.14 ≤ x ≤ 5.14 (2.16)

−5.14 ≤ y ≤ 5.14 (2.17)

You can check out our genetic algorithm implementation on GitHub4.

Figure 2.11. The aptitude chart displays the best fitness value for the ith generation.

4https://gist.github.com/sanchezcarlosjr/dc500b87169f1f0be17158ecb376e377

https://gist.github.com/sanchezcarlosjr/dc500b87169f1f0be17158ecb376e377
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2.3 Time series

Viewing a time series as a stochastic process provides a framework to incorporate un-

certainty and randomness, and to apply probabilistic and statistical tools for analysis

and forecasting [48].

A stochastic process is a sequence of random variables, X1, X2, X3, X4, ... in-

dexed by a set. When this set represents time, the stochastic process is referred

to as a time series. This type is typical for many time series in econometrics

and finance, which is the focus of this thesis. Conversely, when the index set

is continuous (e.g., the set of real numbers), the stochastic process is termed a

continuous-time stochastic process, exemplified by phenomena such as Brownian

motion. Formally, a stochastic process {X(t) : t ∈ T} is a set of random vari-

ables X(t) where each of them is a real-valued random variable, and t belongs to

an index set T . In this thesis, the term ”stochastic process” refers to a piece of

information –such as stock prices, inflation rates, etc.– that is assumed to be a

discrete-time series. We employ autoregressive models to explain these time series

which is a recurrence relation where the current value Xt depends on p steps into

the past, Xt−1, Xt−2, Xt−3, Xt−4, ..., Xt−p and some noise wt, that is, a recurrence of

order p that has the form Xt = ϕ(t,Xt−1, Xt−2, Xt−3, ..., Xt−p, wt) for n ≥ k, where

ϕ : N×Xp → X is a function that involves k consecutive elements of the sequence,

for that we need k initial values. Also, we will work with multivariate time series

where at each time t, there are multiple observations. It is an extension of univari-

ate time series data, which consists of single observations recorded sequentially over

equal time increments. With multivariate time series data, each time you record

data, you record multiple features.
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In the following subsections, we will describe some models that serve to address

time series forecasting in stock markets in various ways. Each of these models of-

fers a unique approach to time series analysis, with some (like RNN, Convnets, and

N-BEATS [9]) stemming from deep learning and others (like ARIMA, ARCH and

GARCH) grounded in classical econometrics. The choice of model often depends on

the nature of the data, the presence of volatility clusters, and the need for inter-

pretability. In [8] and [31] present an extensive comparison of models for forecasting

time series.

2.3.1 ARIMA and other classic models

ARIMA, which stands for AutoRegressive Integrated Moving Average, is a class of

models that explains a given time series based on its own past values, that is, its

own lags and the lagged forecast errors. The general form of an ARIMA model can

be expressed as ARIMA(p,d,q):

(1−
p∑

i=1

ϕiL
i)Yt(1− L)d = (1 +

q∑
j=1

θjL
j)ϵt (2.18)

where p is the order of the autoregressive (AR) model (number of time lags),

d is the degree of differencing (the number of times the data have had past values

subtracted), q is the order of the moving average (MA) model, ϕi are the parameters

of the AR part, θj are the parameters of the MA part, L is the lag operator, Yt

represents the time series, and ϵt is the error term at time t. The AR (autoregressive)

part (1 −
∑p

i=1 ϕiL
i)Yt represents the autoregressive part of the model, which uses

past values of the series as predictors, the I (Integrated) part (1−L)d represents the

order of differencing applied to the time series to make it stationary (constant mean
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and variance over time), and MA (Moving Average) part (1+
∑q

j=1 θjL
j)ϵt accounts

for the moving average component, modeling the error term as a linear combination

of past error terms.

Another classic model for stocks is the ARCH (Autoregressive Conditional Het-

eroskedasticity) model, which captures volatility clustering in financial time series

data. It models the variance of the current error term or innovation as a function of

the actual sizes of the error terms from previous time periods. An extension of the

ARCH model, GARCH (Generalized Autoregressive Conditional Heteroskedasticity)

includes lagged values of both the series’ variance and the squared observation. It

can model changing variances over time and is especially useful for financial time

series where volatility clustering is common.

2.3.2 Deep learning approaches

1D Convolution Neural Network. ConvNets preserve the spatial structure in-

herent to a task by extracting features from data through filters. While densely

connected layers excel at pinpointing global patterns, ConvNets are specifically de-

signed to focus on local nuances. The basis for this distinction lies in their learning

methodology: during the learning phase, ConvNets meticulously create filters to

target distinct elements of the input data. Utilizing convolution operations, they

achieve translation invariance, identify hierarchical patterns, and extract filters from

the input feature map, ensuring uniform transformations across each one. Con-

sequently, the defining features of a convolution layer are the size and number of

its filters. Notably, a 1D ConvNet designed for time series analysis necessitates a

three-dimensional input shaped as [samples, time steps, features].

RNN. An RNN (Recurrent Neural Network) is engineered to identify patterns
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in sequential data, such as time series or natural language. Its architecture includes

loops that enable the persistence and transfer of information from one step of the se-

quence to the next. This makes RNNs suitable for a range of sequence-related tasks,

including time series forecasting. However, a significant challenge with traditional

RNNs is the vanishing gradient problem. During training, as the gradients of the

loss function are backpropagated through the network, they can become increasingly

small, effectively disappearing. This phenomenon makes it difficult for the RNN to

learn and adjust the weights effectively, particularly in cases of long sequences, as

the gradients provide the necessary information for weight adjustments during learn-

ing. To overcome this limitation, variants like LSTM (Long Short-Term Memory)

and GRU (Gated Recurrent Unit) networks have been developed. These architec-

tures introduce mechanisms like gates and memory cells, which help to maintain

and regulate the flow of gradients. LSTMs, for example, have a memory cell that

can maintain information over long sequences, and gates that control the flow of

information into and out of the cell, thus addressing the issue of vanishing gradients

by ensuring that the network can retain and access important information even over

long sequences. Similarly, GRUs simplify the gating mechanism but still effectively

address the vanishing gradient problem. These advancements have made RNNs more

efficient and robust for tasks involving long or complex sequential data.

N-BEATS. N-BEATS (Neural Basis Expansion Analysis for Time Series) repre-

sents a recent development in time series forecasting, notable for its interpretability

and reliance on neural networks. This model stands out by employing a basis expan-

sion approach to decompose the input series. This process involves breaking down

the time series into simpler, fundamental components, which are then processed

through a series of stacked fully connected feed-forward neural networks.
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Methodology

In this chapter, we delve into our asset valuation framework –a set of assumptions,

software configurations, and limitations– which forecasts stock prices without as-

suming a normal distribution, instead relying on a time series model based on Deep

Learning. We also examine experimental settings aimed at constructing an efficient

portfolio, including the configuration of a genetic algorithm and adaptations to MPT.

Subsequently, equipped with the robust model outlined in previous sections, we

are well-positioned to design a language that effectively bridges the relevant domain

with our software, Evolufy.

In the next section, we will conduct various validations on concrete experimental

setups and test the configurations and hypotheses presented in this section.

XLV
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3.1 On theory of value: Asset valuation

Money does not measure value ...

The valuation is subjective.

From Socialism: An Economic and

Sociological Analysis, by Ludwig

von Mises, pp. 113–22.

The experimental settings of MPT are based on the Adaptive Efficient Market

Hypothesis [30], which resembles the Semi-Strong Efficient Market Hypothesis while

also accounting for human nature under stressful conditions. Specifically, it assumes

that the human investors are rational, possess the same information, and adapt to

business conditions most of the time, except when irrational emotional stress impacts

them.

We assume that returns, denoted as R, do not follow a Gaussian distribution

and are independent and identically distributed random variables. Indeed, our first

experiment in the following section (4.1) will explain why. However, our model

continues to neglect considerations of taxes and transaction costs.

We relax these assumptions by interpreting returns as signals and, more broadly,

as time series. We then apply mathematical frameworks such as signal processing,

random walks, and forecasting models like ARIMA, N-BEATS, and RNN.

We seek the intrinsic value while acknowledging that the market sometimes acts

irrationally. We subscribe to the Adaptive Semi-Strong Market Hypothesis with

eventual and causal consistency, implying that the market will act rationally at

some point in the future. Therefore, we can segment our time series to determine

the intrinsic value with a confidence interval at some future point. Before proceeding,
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we need to establish some definitions. First, in accordance with Lo [29], we define

an asset as a sequence of cash flows CF ∈ R, that is, asset = [CFt0 , CFt1 , CFt2 , ...].

Other way to look it as it is a discrete time serie asset(t) = CF (t), t ≥ 0. We must

consider t0 is the present time and we ignore the past to know the assets.

We convey that risk is the potential for experiencing adverse effects resulting

from a given discrete set of events, which is a definition based in [40] and [13].

Analytically, risk is represented and quantified through a function f(p,x), where p

is a vector of probabilities [p1, p2, ..., pn] associated with each adverse event in the

set, and x is a corresponding vector of magnitudes [x1, x2, ..., xn] representing the

potential impact of these events. Each element pi in vector p indicates the probability

of the ith adverse event occurring, while each element xi in vector x signifies the

magnitude of the potential impact of the ith event. The overall risk associated with

the set of events is then calculated using the function, with risk = f(p,x). The

specific form of function f depends on the context in which risk is assessed and the

method of risk assessment being employed. On the another hand, uncertainty occurs

when we cannot state a probability of distribution. A classic classification of risk

is shown in Figure 3.1. Our work ignores uncertainty and focuses on market risk

and unsystematic risk, measured through their volatility, i.e., covariance, standard

deviation. Other metrics have been proposed to measure risk, including value at risk,

semivariance, Sharpe ratio, entropic risk, downside risk, Sortino ratio, and Calmar

ratio [44].

The intrinsic value is same that finding the time serie priceIV (t) = V (CF (t))

where V is the function we valuate the asset in time t given the available informa-

tion. In change, the market price and random walk priceM(t) is the consensus of

value V (CF (t)) between two parties the buyer and seller with the State always be-
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Figure 3.1. Risk Classification: In portfolio management, various risks are present.
Some are measurable, while others are not.

ing implied. Indeed, the brokers show us the last transaction, that is, they shows us

priceM(t). The hypothesis mentioned before implies that in some point in the future

priceIV (t) = priceM(t) during some period of time from t0 to tn, so Bob will able to

beat the market if he knows how. Stronger it is our assumption in both rationalism,

information availability and consistency, larger span of time (∆t) because it reflects

the overall market acts the best way. In the case of stocks, the cashflow is provided

by the dividend D(t), we ignore gain from prices difference because we consider the
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intrinsic value of company doesn’t depend on how we evaluate the company, and the

real value to investors are dividends. So, priceIV (t) = V (D(t)) =
∞∑
u=0

D(u+ t)

(1 + r(u+ t))u

where D ≥ 0 is a random variable in time t, r(t) is the risk-adjusted discount rate

for cashflow at t which it is a random variable too include the inflation, cost oppor-

tunity, taxes, currencies, term structure of interest rates, forecasting cashflows, and

risk adjustments. Besides, we need an estimator P that approximates priceIV and

accounts for the difference from the actual value, which is challenging to determine.

Then, we define the time series R ∈ R, representing the return at time t. These

returns serve as the input for the MPT optimization model:

R(t) =
D(t) + P (t)− P (t− 1)

P (t− 1)
(3.1)

Now, the task at hand is reduced to find either D(t) and r(t). However, they

are complicated to estimate because all human available information is involved, and

how all we know, it changes over time. What does mean available in our case? It

depends on what you think the value is related to the asset and your assumptions

in Efficient Market. Indeed, a trivial way to know what those values is by asking to

the market.

The price believed to be going to happen is the expected value E[P ] of an underly-

ing random variable P . However, P is conditioned, so E[P |I] where is the available

information. Also, we must consider the time serie setting of P such that it is a

stochastic process indexed by time E(Pt+h|It) where the price P for h period Pt+h is

ahead to the available information I at t. A terminology for the whole population is

the mean or expected returns are µ = E[P ], σ2 = E[P ], σ =
√
σ2.

A forecast or prediction is a guess of unknown outcome p of an random variable

P . We can forecast single points p̂, confidence intervals, or the probability density
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function of P as f̂P .

Under Square loss, an unconditionally optical forecast of p is E(P ) and if we

have conditions either E[P |I] and E(Pt+h|It). However, the expected value is not

generally optimal under other relevant loss functions as absolute loss, quantile loss,

and others. So other parameters of the probabilistic density function are optimal.

Besides, we have the sample (the imperfect shadow of population), the past

the returns R̂, with sample estimators µ̂ =
1

T

∑T
t=1 R̂, σ̂2 =

1

T − 1

∑T
t=1(R̂ − µ̂)2,

σ̂ =
√
σ̂2.

Different models are provided to find the R(t) such as CAMP, Gordon model,

among others. However, due to their poor empirical performance, we have opted

for Machine Learning techniques, a specifically Deep Learning, as [36] suggested, to

more accurately estimate E[Ri] using a Mexican dataset.

Among the models, the most famous is the Capital Asset Pricing Model (CAPM),

which provides a formula E[Ri] = Rf + βi(E[Rm] − Rf ) to calculate the expected

returns E[Ri] for an asset i. In this equation, Rf represents the risk-free rate of

return, βi =
cov(Ri, Rm)

σ2
m

, E[Rm] is the expected return on the market portfolio m,

and E[Rm] − Rf is the market risk premium (MRP). So, it gives us a baseline to

make decisions and evaluate our models.

3.2 Forecasting time series with Darts

The challenge lies in forecasting and determining the intrinsic value while considering

time and risk. For this task, we employ autoregressive models provided by the Darts

library. Darts is a Python library designed for time series forecasting that offers a

unified interface for working with various types of time series data. The library aims

to provide a set of user-friendly yet powerful tools for forecasting, with an emphasis
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on ease of use, readability, and flexibility. It supports a range of forecasting mod-

els, including ARIMA, Exponential Smoothing, Facebook Prophet, RNN, LSTM,

and others. Our setup utilizes the state-of-the-art model N-BEATS (Neural Basis

Expansion Analysis for Time Series) [39], a fully connected feed-forward neural net-

work architecture. N-BEATS has demonstrated the capability to outperform other

state-of-the-art methods and provide interpretable outputs.

3.3 Modern Portfolio Theory changes

As defined in the section 2.1.2.1 on MPT, this traditional MPT utilizes variance

var as a measure of risk. In this subsection, we describe an alternative model that

employs std instead, thereby relaxing an assumption and potentially providing a

more direct measure of risk:

min
x

U(x) = risk − returns = std(Rp)− λE[Rp] =
√
xTΣx− λRTx (3.2)

subject to:

|J1,n · x− 1| ≤ ϵ,x ∈ Rn (3.3)

with similar explanation that in section 2.1.2.1. The constraint has been adjusted to

allow for the possibility of holding cash with a small value ϵ, which could be beneficial

during periods of high volatility or when the market is expected to decline. Holding

cash might reduce the overall risk of the portfolio.
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3.4 Genetic algorithm configuration

The section on genetic algorithms, as previously described in 2.2.3, necessitates a

configuration because it is fundamentally a metaheuristic algorithm. The term ’con-

figuration’ refers to specific strategies and their hyper-parameters, such as popula-

tion size, mutation probability, elite ratio, selection and crossover types, the number

of iterations, elitism, variable types, and the fitness function. In the context of ge-

netic algorithms, each configuration property plays a distinct role in the evolutionary

search process [26] [11]. The population size defines the number of individuals within

each generation, providing a balance between genetic diversity and computational

efficiency. Mutation probability dictates the chance of spontaneous genetic variation,

introducing new traits and maintaining diversity to avoid local optima. The elite

ratio specifies the proportion of the fittest individuals that are preserved, ensuring

the retention of high-quality solutions. Selection type, particularly tournament se-

lection, selects superior individuals from a random sample to be parents of the next

generation. Crossover type, such as shuffle crossover, describes the genetic recombi-

nation method used to produce offspring from parents. The number of iterations, or

generations, indicates how many times the population will evolve through its genetic

operations. Elitism is the strategy of carrying forward the best solutions, preventing

regression in quality. Variable types refer to the nature of the variables in solutions,

which could be binary, discrete, or continuous. The fitness function is a critical com-

ponent that quantifies the optimality of solutions. The parents portion determines

what fraction of the population is selected for reproduction, influencing the rate of

convergence. Lastly, the initialization of the population with a random distribution,

across a population with n dimensions each, ensuring a diverse starting point for the

algorithm’s search.
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In this thesis, we adhere to the standard configuration provided by the genetical-

gorithm library. Specifically, we employ elitism strategies that ensure the retention

of the best member in each generation. Our configuration includes 1500 generations,

a population size of 10000, a mutation probability of 0.5, an elite ratio of 0.1, a

parents’ portion of 0.3, a tournament selection type, a shuffle crossover type, and

a normal distribution for initializing a population with dimensions (10000, n). Our

major contribution is the design of a fitness function that encodes the constraints,

as shown below:

ϕ(x) =


√
xTΣx− λRTx if |J1,n · x− 1| ≤ ϵ,

∆+ ∥x− 1∥2 otherwise.

(3.4)

We initiate our exploration with the framework outlined by [10] and [44], which

instructs us on the incorporation of constraints into expanded fitness functions. Our

method employs an exterior static penalty function, beginning from a random (po-

tentially infeasible) starting point, and progressing toward the feasible region. This

is accomplished with a penalty factor ∆ that remains constant across generations

plus a distance function ∥x−1∥2 to feasible region. Our fitness function operates as

an unconstrained genetic algorithm when the individual is within the feasible zone;

otherwise, it discourages solutions that deviate significantly from the feasible region.

3.5 Software domain

Our software, developed using the object-oriented paradigm in the Python language,

is meticulously designed to align seamlessly with its intended domain. A primary

emphasis is placed on ease of maintainability. In this section, we detail the design
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decisions made to achieve this goal. Our approach is rooted in several well-established

principles:

• Open-Close principle: This principle asserts that software entities should

remain open for extension but closed for modification. By adhering to this

principle, we ensure our software can adapt to changing requirements without

the need for significant alterations to the existing codebase.

• Explicit interfaces: This principle emphasizes the importance of clear and

well-defined interfaces, ensuring components of our software interact in pre-

dictable and consistent manners. This reduces ambiguities and potential er-

rors.

• Small interfaces: Advocating for concise and focused interfaces, this principle

enhances their understandability and ease of implementation.

These principles, among others, draw inspiration from the foundational work of

Meyer [35].

Following our initial discussion, we further explore our use cases and object-

oriented models, placing a special emphasis on the design of an entity that mirrors

the behavior of an investor agent. This design is illustrated in the class UML dia-

gram 3.3 and in the use cases 3.2 that represents different aspects of Evolufy.
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Figure 3.2. Use cases

The investor agent is envisioned as a virtual embodiment of an investor, tai-

lored based on user-defined parameters. This entity is engineered to autonomously

make investment decisions, leveraging predefined criteria, comprehensive data, and

machine learning algorithms. Notably, the agent sources its data from platforms

such as YahooFinanceAPI and DataBursatilAPI, converting this data into action-

able objects that signify asset indicators, inflation rates, and other pertinent market

information. Subsequently, we employ time-series models to project the intrinsic

asset value and then implement the investment strategy delineated in this thesis.

The final phase involves rebalancing within the actual market through a legitimate

broker.
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Experiments and Results

In this chapter, we critically examine the assumption that stocks follow a normal

distribution, focusing on the Mexican stock market. We explore three distinct exper-

imental settings aimed at creating an efficient portfolio for Bob, building upon the

groundwork established in the previous chapter. We then present the results from

these experiments, providing insights into the mechanisms he can use to navigate the

market. Additionally, we will apply backtesting, a standard method for validating

retrodiction datasets. This approach will enable us to test the effectiveness of our

methodology against historical data. In summary, this section is dedicated to testing

our methodology through various experiments.

4.1 Do daily market price changes follow a normal

distribution?

Our null hypothesis asserts that the Mexican price stocks originate from a population

that is normally distributed as determined by the D’Agostino’sK2 Test. If for a given

LVII



Chapter 4. Experiments and Results LVIII

stock we fail to reject pvalue > 0.1, otherwise we reject the null hypothesis. We did

the experiment with 100 assets1, and the null hypothesis for all of them was rejected,

so we may accept the alternative hypothesis that Mexican price stocks doesn’t follow

a normal distribution. Indeed, as observed in Figure 4.1, the behavior of the stock

sample does not follow a normal distribution.

Figure 4.1. Mexican Daily Market Price Returns Featuring Select Stocks

4.2 Applying Fisher transformation into Mexican

price stocks

Ehlers [14] proposes applying the Fisher transformation to price changes in order to

normalize the data. Specifically, he states that it is possible to transform a dataset

with an unknown probability distribution into a Normal distribution with mean 0

and standard deviation 1.

1https://github.com/sanchezcarlosjr/evolufy
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Let data be a dataset that we wish to transform. We define the transformation

as follows:

1. data′ is the reshaped data vector, such that data′ ∈ Rn×1.

2. The scaler is a Min-Max Scaler function which scales each element x of the

reshaped data data′ according to the formula:

scaler(x) = (−0.99999 + (x−min(data′))
1.99998

max(data′)−min(data′)
)

3. arctanh(data) receives the scaled data and reshapes values to approximate a

normal distribution.

This transformation was applied under similar conditions as before, involving

D’Agostino’s K2 Test with 100 stocks and a null hypothesis of pvalue > 0.1. However,

it led to the rejection of the null hypothesis. Therefore, we cannot conclude that

stocks follow a normal distribution. Consequently, we need different assumptions,

which will be presented in the next section.

4.3 Experiment - Naive Bob: He assumes market

prices are sufficient.

Bob lacks the expertise to forecast D(t) and r(t), and he is unable to employ trans-

formations or Gaussian guessing. However Bob can work under the assumption that

the market is efficient, meaning that all participants are privy to the same informa-

tion, and rational, in that each participant is capable of determining the accurate

intrinsic value of an asset and acts in accordance with this valuation. He applies this
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assumption within a time window of 10 days, and he also assumes that the market

price has already factored in future dividends, so PM(t) = PIV (t) over t0,t1, ..., t10.

But Bob must aggregate the information that market prices provide as E[PM(t)|I],

because the price is a consensus between two parties, but the market price aggregate

the price from all participants. He doesn’t assume the price follows a Normal distri-

bution, so his task is to find the E[PM(t)|I] for each asset. As previously mentioned,

given the square loss criterion, the optimal forecast for pM(t) is E[PM(t)|I]. To es-

timate this, we train a deep learning model such that it gives us a estimator ˆpM(t)

for each asset. So, he has a tensor shape (time, features, samples) = (3600, 1, 100),

so he runs up against univariate stochastic time serie. Nevertheless, Bob has chosen

a single feature, which is the difference in historical closing prices, as his primary

source of income comes from capital transactions rather than dividends.

Since log scale provides us symmetry and the same bounding (t > 1) we employ

to describe the random variable R(t).

R(t) = log10

(
PM(t)

PM(t− 1)

)
= log10(PM(t))− log10(PM(t− 1)) (4.1)

And we estimate the expected returns E[R(t)] as

µ̂ =
1

T

T∑
t=1

ˆR(t) (4.2)

=
1

T

T∑
t=1

[log10( ˆPM(t))− log10( ˆPM(t− 1))] (4.3)

=
1

T
(log10( ˆPM(T ))− log10( ˆPM(0))) (4.4)

where T = 10 because it is given for the Bob’s window of 10 periods.
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He’s going to test his idea with a 48 assets, then compare the results with a

baseline, which happens to be an index in the market. If he can achieve better

results than those of the market, he will have beaten the market. For instance,

the USA markets have the S&P 500 and the Dow Jones Industrial Average (DJI).

The Mexican market features the ”Price and Quotation Index Close,” provided by

Banco de México [1]. This is a capitalization-weighted index that represents the

performance of the 35 largest and most liquid stocks listed on the BMV.

This experiment evaluation involves backtesting, which entails testing our pre-

dictive model on historical data. Specifically, we train a model from the beginning of

time until January 01, 2022. The agent will adapt to data from that starting point

and execute our genetic algorithm and MPT version to select a portfolio with vary-

ing asset weights, while assuming fractional shares. Subsequently, we simulate 365

days of daily trading with those weights. We will then benchmark the returns of this

portfolio against the IPC ˆMXX during those months, utilizing different metrics.

4.4 Results

In our backtest, we assessed the investment strategy by constructing a portfolio

consisting of 48 diverse assets and we’ve ignored transaction costs. We then bench-

marked this portfolio’s performance against a baseline market index during a live

test. Our investment model was developed and trained using historical data up to

the year 2022. For comparative analysis, we selected the ’Price and Quotation Index

Close’ as our benchmark index, focusing specifically on its performance during the

year 2022. To replicate the IPC ˆMXX, a passive investor can buy the ETF iShares

NAFTRAC. We propose a daily rebalancing strategy using same weights determined

by our configuration, which includes a genetic algorithm with a fitness function, a
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time series forecast using the NBEATS model, and a selection of 48 fractional shares.

Pyfolio, a Python package, provides us with a variety of different benchmarks that

we will need to explain.

Essentially, our strategy performs well on the in-sample data, but it does not per-

form well on out-of-sample data, as Table 4.1 shows. Also, it also doesn’t outperform

the IPC index as Table 4.2 indicates.

Table 4.1. The performance metrics of our investment strategy suggest that it ex-
hibits lower performance in the region of interest and higher performance in previous
periods. Here, ”in-sample” refers to the period of time before the validation period,
and ”out-of-sample” pertains to the live validation. Typically, the higher the Sharpe
ratio, the better.

In-sample Out-of-sample All

Annual return 12.5% -23.082% 1.61%

Cumulative returns 39.42% -23.72% 6.349%

Annual volatility 8.7% 14.037% 10.445%

Sharpe ratio 1.40 -1.80 0.21

Table 4.2. The performance metrics of a following the IPC index have better results
in out-of-sample

In-sample Out-of-sample All

Annual return 2.472% -4.142% 0.657%

Cumulative returns 7.132% -4.271% 2.556%

Annual volatility 7.748% 7.055% 7.567%

Sharpe ratio 0.35 -0.56 0.12

The Figure 4.2 below provides insight into why we outperformed in live data

and outperformed the market in the backtest. Our hypothesis is that the N-Beats
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model may have overfit in the past, and it might not have provided sufficient valu-

able information for the optimization model during that time period. We propose,

in future work, to increase accuracy by including experiments with more comprehen-

sive market information such as dividends, inflation, etc. Additionally, we suggest

implementing online learning, which involves retraining and optimizing the model

daily to stay updated with the most recent information available.

Figure 4.2. Cumulative returns are represented by the green curve for ”in-sample”
and the red curve for ”out-of-sample.” The gray curve represents the benchmark
index. The blue region indicates the Bayesian prediction for the returns in backtest.
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Conclusions

This thesis makes a contribution to the field of financial investment by introducing a

library designed to manage investment portfolios, offering the potential to enhance

investor returns.

Our hypothesis is centered on the potential to improve portfolio performance

through the integration of evolutionary algorithms with Modern Portfolio Theory

and time series analysis. The results we have presented validate the effectiveness of

our methods, demonstrating their adaptability and ability to benefit from market

volatility. However, for these methods to yield better return forecasts, a profound

change in risk measurement is required, such as incorporating downside risks.

Through the deployment of a well-designed library, we provide investors with the

essential tools to navigate the complexities of financial markets and potentially profit

from them.

Furthermore, this thesis explores the potential for developing innovative strategies

that can outperform the market by leveraging ’Banking on Prices and Dividends.’

It aims to harness the full spectrum of market information by incorporating multi-

variate time series analysis, which goes beyond models like the Fama-French three-

LXIV
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factor model by considering a broader range of available information. Additionally,

we propose, as future work, comprehensive sentiment analysis and thorough back-

testing against other strategies, including the Harry Browne Permanent Portfolio,

Ray Dalio’s All Weather Portfolio, Intraday Trading, Value Investing, and passive

investing strategies like those involving the S&P 500.
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On scales

The return rate R(t) in ratio scale gives us

R(t) =
PM(t)− PM(t− 1)

PM(t− 1)
(A.1)

We say a scale is symmetric if only if R(t) + R(t + 1) = 0 when PM(t − 1) −

PM(t+ 1) = 0 for all PM .

Suppose we have the a gain in time t and lost in time t+1 with the same absolute

scale such that

R(t) +R(t+ 1) = (PM(t)− PM(t− 1)) + (PM(t+ 1)− PM(t)) (A.2)

= PM(t− 1)− PM(t+ 1) = 0 (A.3)

However, in the same conditions, the ratio scale gives us R(t) + R(t + 1) = 0 if

and only if PM(t) = PM(t − 1), so the ratio scale is asymmetric because it doesn’t

hold for all PM . We prove it as follows:

LXVI
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R(t) +R(t+ 1) = 0 (A.4)

PM(t)− PM(t− 1)

PM(t− 1)
+

PM(t+ 1)− PM(t)

PM(t)
= 0 (A.5)

PM(t)

PM(t− 1)
+

PM(t+ 1)

PM(t)
− 2 = 0 (A.6)

Since PM(t− 1) = PM(t+ 1), we apply it (remember same conditions).

PM(t)

PM(t− 1)
+

PM(t− 1)

PM(t)
− 2 = 0 (A.7)

P 2
M(t) + P 2

M(t− 1)

PM(t− 1)PM(t)
− 2 = 0 (A.8)

(P 2
M(t)− P 2

M(t− 1))2 = 0 (A.9)

and it holds when PM(t) = PM(t− 1).

Now, we need a scale that be symmetric and provide us a ratio. The log scale

have came to rescue us.

R(t) +R(t+ 1) = 0 (A.10)

[log10(PM(t))− log10(PM(t− 1))] + [log10(PM(t+ 1))− log10(PM(t))] = 0 (A.11)
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log10(PM(t− 1))− log10(PM(t+ 1)) = 0 (A.12)

log10(PM(t− 1))− log10(PM(t− 1)) = 0 (A.13)

Therefore, log scale symmetry holds for all PM .
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