
MexicanPACS
Date |
---|
Abstract
We predict the BIRADS by applying a Convolutional neural network.
Intelligent BIRADS lights in support of the diagnosis of breast cancer in Baja California.
Introduction
abc
def
Problem
Since breast cancer is the first dead cause in Mexico among women it became a big public health problem —in fact, 2.26 million cases worldwide. In other words, is a type of cancer with the highest incidence and mortality in women: every day at least 14 women, chiefly between 50 to 69 years, die. Indeed, as we can see in the below figure, breast cancer is an increasing tendency compared to other cancers.

Nowadays, doctors carried out analyses using Traditional 2D mammograms from patient requests at public Mexican hospitals. In Ensenada, doctors request private external assistance. Oncologists annotate medical images, and they chiefly say what is the patient's BI-RADS score. "BI-RADS" means Breast Imaging Reporting and Database System, and it's scoring standard radiologists and oncologists use to describe mammogram results. We'll explain further BI-RADS in the section.
Our goals are to build data mining models that understand mammograms and predict breast cancer developing risk, continuing works. Since our model output is a person's future healthy situation, we'll do descriptive and predictive methods, indeed we're going to apply Machine Learning algorithms to datasets. Of course, we don't expect to replace medical doctors but assist them. We know other computer-aided detection systems have been developed for breast cancer detection but no one applies them to regional cities and they are not free.
We expect our project can help thousands of women in quick cancer detection because data mining is faster and cheaper than humans, therefore we're contributing to the decrease in the death rate.
Related work
@startuml
actor Paciente
actor Recepción
actor TecnólogoRadiología
actor Radiólogo
actor HIS
note left HIS: Hospital Information System
database DICOM
actor Modelo
actor PACS
note left PACS: Picture Archiving and Communication System
actor Oncólogo
actor Proveedor
actor ProgramaDeCancer
Paciente -> Recepción : Solicita mamografía
Recepción -> HIS : Registra solicitud
HIS --> TecnólogoRadiología : Confirma solicitud
TecnólogoRadiología -> Paciente : Realiza mamografía
TecnólogoRadiología -> PACS : Envía imágenes de mamografía
PACS --> TecnólogoRadiología : Confirma recepción de imágenes
PACS --> Proveedor: Emite imágenes a proveedor
PACS -> Radiólogo : Notifica disponibilidad de nuevas imágenes
Proveedor -> PACS : Revisa e interpreta imágenes
PACS -> ProgramaDeCancer: Muestra resultados
ProgramaDeCancer -> Paciente: Emite veridicto sobre biopsia
@enduml

Propuesta
@startuml
actor Paciente
actor Recepción
actor TecnólogoRadiología
actor Radiólogo
actor HIS
note left HIS: Hospital Information System
database DICOM
actor Modelo
actor PACS
note left PACS: Picture Archiving and Communication System
actor Oncólogo
actor Proveedor
actor ProgramaDeCancer
Paciente -> Recepción : Solicita mamografía
Recepción -> HIS : Registra solicitud
HIS --> TecnólogoRadiología : Confirma solicitud
TecnólogoRadiología -> Paciente : Realiza mamografía
TecnólogoRadiología -> PACS : Envía imágenes de mamografía
PACS --> TecnólogoRadiología : Confirma recepción de imágenes
PACS -> Modelo: Emite información del paciente (Mastografías o factores de riesgo)
Modelo -> PACS: Guarda resultado (BIRADS y confianza)
PACS -> Radiólogo: Muestra resultado de Modelo
PACS --> Proveedor: Emite imágenes a proveedor (ordenando por prioridad)
PACS -> Radiólogo : Notifica disponibilidad de nuevas imágenes
Proveedor -> PACS : Revisa e interpreta imágenes
PACS -> ProgramaDeCancer: Muestra resultados
ProgramaDeCancer -> Paciente: Emite veridicto sobre biopsia
@enduml
Methodology
- Key concepts
- DICOM VIEW
- Preprocessing DDSM
- Engineering process
DICOM
Dicom Web
Development
Functional requirements
Those functional requirements ordered by priority are authenticated users, showing a list of patients, adding patients, adding new Screening Studies, viewing screening tests, confirming cancer diagnosis or not in the screening test, listing screening tests, managing users, and calculating the suspicion of breast cancer.
Imagenes (4 mastografias) en formato DCM almacenadas en carpetas de Windows 1…N cuyo directorio son expendientes ID (no vinculado con el servicio web).
Vincular las carpetas y el expendiente electrónico HTML y CSS y también en formato PDF.
Precesamiento de imagenes con OpenCV.
BIRDS y posibles caracteristicas.
"Expediente ID con mastografía".
graph TD
Radiologo --> Servidor
Expect results.
CRUD.
Image.
After sending neuronal networks that send a BIRDS and identify the parts, preprocessing by mammograms.
Get BIRDS.
Identify warning zones.
Get interpretation.
Interpretation and BIRADS.
Help to radiology.
Proceso
@startuml start #yellow: Entendimiento de los procesos hospitalarios; #yellow: Entendimiento, selección y preparación de mamografías y metadatos; : Preparación de los datos; : Modelado y entrenamiento de IA (redes neuronales convolucionales profundas); : Evaluación del modelo; #yellow: Despliegue del modelo sobre DICOM Web (KPACS a OHIF); stop @enduml
Server Hospital
ConQuest DICOM server 1.5.0b HGESRVRRX1
Date of this release 20201101
University of California at David (Personal PACS)
Delphi TCP/IP connection
Francios Piette
Lua scripting
sqlite database
UPACS NT PACS System
DCM Standard
8 BSD
Constraints
Web system.
Image Format.
Innovation.
Secretary of Health.=
What are the operating system and another operating system we have to deploy? Windows.
Can we use whatever technology we like? Yes.
What are the conditions we must consider to?
What are system resources?
Will the system access people’s hospitals or hospitals’ LANs?
Are there some user interface guidelines? and Where can I consult for? Yes.
Every patient has n studies and every study has n images.
Every patient
Distributed computing
Everything is ok with cloud platforms except when the time to pay come to.

Preprocessing


Ray
https://docs.ray.io/en/latest/data/pipelining-compute.html#pipelining-datasets
https://docs.ray.io/en/latest/data/api/doc/ray.data.read_images.html#ray.data.read_images
https://docs.ray.io/en/latest/data/examples/ocr_example.html
Download images
cat index.txt | parallel -j+0 "wget -r {}"
Dataset description
Exploratory data analysis
Prediction algorithms
Preprocessing images

TwoViewDensityNet: Two-View Mammographic Breast Density Classification Based on Deep Convolutional Neural Network Mariam Busaleh 1 , Muhammad Hussain 1,* , Hatim A. Aboalsamh 1 , Fazal-e-Amin 2 and Sarah A. Al Sultan 3
ljpeg for Python 3
https://github.com/sanchezcarlosjr/ljpeg
System
PACS over the web
DICOM image viewer
DICOMweb
https://otechimg.com/publications/pdf/dicomweb_white_paper.pdf
https://www.dicomstandard.org/using/dicomweb
Code
@startuml ExpendienteElectronicoWeb -> EstudiosDeRayosX: iframe /?id=1.2.4.2807152 EstudiosDeRayosX --> EstudiosDeRayosXServer: /1.2.4.2807152 EstudiosDeRayosXServer --> HospitalServerFTP: read directory 1.2.4.2807152 and subdirectories EstudiosDeRayosXServer --> DB: ToDo EstudiosDeRayosXServer --> EstudiosDeRayosX: {images: [], ...} EstudiosDeRayosX --> EstudiosDeRayosX: visualize thumbnails EstudiosDeRayosX --> EstudiosDeRayosXServer: visualize /:directory/:subdirectory example /1.2.4.2807152/2807152.1 EstudiosDeRayosXServer --> EstudiosDeRayosX: image @enduml
Results
Conclusions and limitations
References
https://github.com/OHIF/Viewers
https://pubs.rsna.org/doi/10.1148/radiol.211105
https://github.com/sanchezcarlosjr/Breast-Cancer-risk-estimation-system
BI-RADS Terminology for Mammography Reports: What Residents Need to Know. (2023, May 10). Retrieved from https://pubs.rsna.org/do/10.1148/rg.2019180068.pres/full
https://github.com/sanchezcarlosjr/breast-cancer-pipeline
https://github.com/fjeg/ddsm_tools/blob/master/ddsm_tools/ddsm_util.py