Application of magnetic resonance imaging in zoology | SpringerLink

Log Date
Dataset Raw


Magnetic resonance imaging (MRI) is a noninvasive imaging technique that today constitutes one of the main pillars of preclinical and clinical imaging. MRI’s capacity to depict soft tissue in whole specimens ex vivo as well as in vivo, achievable voxel resolutions well below (100 μm)3, and the absence of ionizing radiation have resulted in the broad application of this technique both in human diagnostics and studies involving small animal model organisms. Unfortunately, MRI systems are expensive devices and have so far only sporadically been used to resolve questions in zoology and in particular in zoomorphology. However, the results from two recent studies involving systematic scanning of representative species from a vertebrate group (fishes) as well as an invertebrate taxon (sea urchins) suggest that MRI could in fact be used more widely in zoology. Using novel image data derived from representative species of numerous higher metazoan clades in combination with a comprehensive literature survey, we review and evaluate the potential of MRI for systematic taxon scanning. According to our results, numerous animal groups are suitable for systematic MRI scanning, among them various cnidarian and arthropod taxa, brachiopods, various molluscan taxa, echinoderms, as well as all vertebrate clades. However, various phyla in their entirety cannot be considered suitable for this approach mainly due to their small size (e.g., Kinorhyncha) or their unfavorable shape (e.g., Nematomorpha), while other taxa are prone to produce artifacts associated either with their biology (e.g., Echiura) or their anatomy (e.g., Polyplacophora). In order to initiate further uses of MRI in zoology, we outline the principles underlying various applications of this technique such as the use of contrast agents, in vivo MRI, functional MRI, as well as magnetic resonance spectroscopy. Finally, we discuss how future technical developments might shape the use of MRI for the study of zoological specimens.


2D: Two-dimensional 3D: Three-dimensional BBB: Blood–brain barrier BOLD: Blood oxygenation level-dependent CA: Contrast agent cLSM: Confocal laser scanning microscopy CSI: Chemical shift imaging CT: Computed tomography DTI: Diffusion tensor imaging DWI: Diffusion-weighted imaging FLASH: Fast low-angle shot FMNH: Field Museum of Natural History fMRI: Functional magnetic resonance imaging FOV:FR : RARE factor FSPGR: Fast spoiled gradient echo MEMRI: Manganese-enhanced magnetic resonance imaging MR: Magnetic resonance MRI: Magnetic resonance imaging MRS: Magnetic resonance spectroscopy NA : Average number NMR: Nuclear magnetic resonance OPT: Optical projection tomography PET: Positron emission tomography RARE: Rapid acquisition with relaxation enhancement SE:SIO: Scripps Institution of Oceanography SNR: Signal-to-noise ratio TA : Acquisition time TE :TR : Repetition time TSE: Turbo spin echo μCT: Micro-computed tomography ZMB: Zoologisches Museum Berlin ZMH: Zoologisches Museum Hamburg


  1. Aggarwal M, Zhang J, Miller MI, Sidman RL, Mori S (2009) Magnetic resonance imaging and micro-computed tomography combined atlas of developing and adult mouse brains for stereotaxic surgery. Neuroscience 162:1339–1350
  1. Ardenkjar-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH (2003) Increase in signal-to-noise ratio of >10, 000 times in liquid-state NMR. Proc Natl Acad Sci USA 100:10158–10163
  1. Baltes C, Radzwill N, Bosshard S, Marek D, Rudin M (2009) Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed 22:834–842
  1. Basser PJ, Mattiello J, Le Bihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson 103:247–254
  1. Belton PS, Gil AM, Webb GA, Rutledge D (2003) Magnetic resonance in food science: latest developments. RSC Publishing, Cambridge
  1. Belton PS, Engelsen SB, Jakobsen HJ, Amin MHG, van den Berg F (2005) Magnetic resonance in food science: the multivariate challenge. RSC Publishing, Cambridge
  1. Benveniste H, Blackband SJ (2002) MR microscopy and high resolution small animal MRI: applications in neuroscience research. Prog Neurobiol 67:393–420
  1. Benveniste H, Blackband SJ (2006) Translational neuroscience and magnetic-resonance microscopy. Lancet Neurol 5:536–544
  1. Berthold P, Elverfeldt D, Fiedler W, Hennig J, Kaatz M, Querner U (2001) Magnetic resonance imaging and spectroscopy (MRI, MRS) of seasonal patterns in body composition: a methodological pilot study in white storks (Ciconia ciconia). J Ornithol 142:63–72
  1. Blackband SJ, Stoskopf MK (1990) In vivo nuclear magnetic resonance imaging and spectroscopy of aquatic organisms. Magn Reson Imag 8:191–198
  1. Bock C, Frederich M, Wittig RM, Pörtner HO (2001a) Simultaneous observations of haemolymph flow and ventilation in marine spider crabs at different temperatures: a flow weighted MRI study. Magn Reson Imag 19:1113–1124
  1. Bock C, Sartoris FJ, Wittig RM, Pörtner HO (2001b) Temperature dependent pH regulation in stenothermal Antarctic and eurythermal temperate eelpout (Zoarcidae): an in vivo NMR study. Polar Biol 24:869–874
  1. Bock C, Sartoris FJ, Pörtner HO (2002) In vivo MR spectroscopy and MR imaging on non-anaesthetized marine fish: techniques and first results. Magn Reson Imag 20:165–172
  1. Bock C, Lurmann G, Pörtner HO (2007) Temperature and oxygenation dependence of haemoglobin and hemocyanin relaxation times at 9.4 T. Proc Int Soc Magn Reson Med 15:2749
  1. Boistel R, Swoger J, Krzic U, Fernandez V, Gillet B, Reynaud EG (2011) The future of three-dimensional microscopic imaging in marine biology. Marine Ecol. doi:10.1111/j.1439-0485.2011.00442.x
  1. Bringmann G, Wolf K, Lanz T, Haase A, Hiort J, Proksch P, Müller WEG (1999) Direct demonstration of spatial water distribution in the sponge Suberites domunucla by in vivo NMR imaging. Mar Ecol Prog Ser 189:307–310
  1. Brinkley CK, Kolodny NH, Kohler SJ, Sandeman DC, Beltz BS (2005) Magnetic resonance imaging at 9.4 T as a tool for studying neural anatomy in non-vertebrates. J Neurosci Methods 146:124–132
  1. Brouwer M, Engel DW, Bonaventura J, Johnson GA (1992) In vivo magnetic resonance imaging of the blue crab, Callinectes sapidus: effect of cadmium accumulation in tissues on proton relaxation properties. J Exp Zool 263:32–40
  1. Budd GE, Olsson L (2007) Editorial: a renaissance for evolutionary morphology. Acta Zool (Stockholm) 88:1
  1. Butcher PA, Broadhurst MK, Hall KC, Cullis BR, Nicoll RG (2009) Scale loss and mortality in angled-and-released Eastern sea garfish (Hyporhamphus australis). ICES J Marine Sci 67:522–529
  1. Chanet B, Fusellier M, Baudet J, Madec S, Guintard C (2009) No need to open the jar: a comparative study of magnetic resonance imaging results on fresh and alcohol preserved common carps (Cyprinus carpio (L. 1758), Cyprinidae, Teleostei). Comptes Rendus de Biol 332:413–419
  1. Chudek JA, Crook AME, Hubbard SF, Hunter G (1996) Nuclear magnetic resonance microscopy of the development of the parasitoid wasp Venturia canescens within its host moth Plodia interpunctella. Magn Reson Imag 14:679–686
  1. Corfield JR, Wild JM, Cowan BR, Parsons S, Kubke MF (2008) MRI of postmortem specimens of endangered species for comparative brain anatomy. Nat Protoc 3:597–605
  1. Czisch M, Coppack T, Berthold P, Auer DP (2001) In vivo magnetic resonance imaging of the reproductive organs in a passerine bird species. J Avian Biol 32:278–281
  1. Davenel A, Quellec S, Pouvreau S (2006) Noninvasive characterization of gonad maturation and determination of the sex of Pacific oysters by MRI. Magn Reson Imag 24:1103–1110
  1. Davenel A, González R, Suquet M, Quellec S, Robert R (2010) Individual monitoring of gonad development in the European flat oyster Ostrea edulis by in vivo magnetic resonance imaging. Aquaculture 307:165–169
  1. De Groof G, Verhoye M, van Meir V, Tindemans I, Leemans A, van der Linden A (2006) In vivo diffusion tensor imaging (DTI) of brain subdivisions and vocal pathways in songbirds. Neuroimage 29:754–763
  1. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sorensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749
  1. Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sorensen MV (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172
  1. Endo H, Yamagiwa D, Arishima K, Yamamoto M, Sasaki M, Hayashi Y, Kamiya T (1999) MRI examination of trachea and bronchi in the Ganges river dolphin (Platanista gangetica). J Vet Med Sci 61:1137–1141
  1. Farhat IA, Belton PS, Webb GA (2007) Magnetic resonance in food science: from molecules to man. RSC Publishing, Cambridge
  1. Favila ME, Fresneau D, Gonord P, Ruaud JP (2004) Nuclear magnetic resonance microscopy of the internal structure of the carrion rolling scarab Canthon cyanellus cyanellus (Scarabaeidae: Scarabaeinae). Coleopt Bull 58:1125–1131
  1. Fernández M, Bock C, Pörtner HO (2000) The cost of being a caring mother: the ignored factor in the reproduction of marine invertebrates. Ecol Lett 3:487–494
  1. Forbes JG, Morris HD, Wang K (2006) Multimodal imaging of the sonic organ of Porichthys notatus, the singing midshipman fish. Magn Reson Imag 24:321–331
  1. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hänicke W, Sauter R (1989) Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9:79–93
  1. Fresneau D, Dantas de Araujo C, Kan SK, Gonord P, Jallon JM (1991) Premières tentatives d’imagerie RMN sur des insectes. Actes des Colloques Insectes Sociaux 7:195–199
  1. Geoghegan IE, Chudek JA, Mackay RL, Lowe C, Moritz S, McNicol RJ, Birch ANE, Hunter G, Majerus MEN (2000) Study of anatomical changes in Coccinella septempunctata (Coleoptera: Coccinellidae) induced by diet and by infection with the larva of Dinocampus coccinellae (Hymenoptera: Braconidae) using magnetic resonance microimaging. Eur J Entomol 97:457–461
  1. Giribet G (2010) A new dimension in combining data? The use of morphology and phylogenomic data in metazoan systematics. Acta Zool (Stockholm) 91:11–19
  1. Goodman BA, Gordon SC, Chudek JA, Hunter G, Woodford JAT (1995) Nuclear magnetic resonance microscopy as a non-invasive tool to study the development of lepidopteran pupae. J Insect Physiol 41:419–424
  1. Gozansky EK, Ezell EL, Budelmann BU, Quast MJ (2003) Magnetic resonance histology: in situ single cell imaging of receptor cells in an invertebrate (Lolliguncula brevis, Cephalopoda) sense organ. Magn Reson Imag 21:1019–1022
  1. Granot J (1986) Selected volume excitation using stimulated echoes (VEST): application to spatially localized spectroscopy and imaging. J Magn Reson 70:488–492
  1. Gujonsdottir M, Belton PS, Webb GA (2009) Magnetic resonance in food science: challenges in a challenging world. RSC Publishing, Cambridge
  1. Hallock KJ (2008) Magnetic resonance microscopy of flows and compressions of the circulatory, respiratory, and digestive systems in pupae of the tobacco hornworm, Manduca sexta. J Insect Sci 8:10
  1. Hart AG, Bowtell RW, Köckenberger W, Wenseleers T, Ratnieks FLW (2003) Magnetic resonance imaging in entomology: a critical review. J Insect Sci 3:5
  1. Herberholz J, Mims CJ, Zhang X, Hu X, Edwards DH (2004) Anatomy of a live invertebrate revealed by manganese-enhanced magnetic resonance imaging. J Exp Biol 207:4543–4550
  1. Hermann EJ, Hattingen E, Krauss JK, Marquardt G, Pilatus U, Franz K, Setzer M, Gasser T, Tews DS, Zanella FE, Seifert V, Lanfermann H (2008) Stereotactic biopsy in gliomas guided by 3-Tesla 1H-chemical-shift imaging of choline. Stereotact Funct Neurosurg 86:300–307
  1. Holliman FM, Davis D, Bogan AE, Kwak TJ, Cope WG, Levine JF (2008) Magnetic resonance imaging of live freshwater mussels (Unionidae). Invertebr Biol 127:396–402
  1. Hopkins WD, Pilcher DW, MacGregor L (2000) Sylvian fissure asymmetries in nonhuman primates revisited: a comparative MRI study. Brain Behav Evol 56:293–299
  1. Hörnschemeyer T, Goebbels J, Weidemann G, Faber C, Haase A (2006) The head morphology of Ascioplaga mimeta (Coleoptera: Archostemata) and the phylogeny of Archostemata. Eur J Entomol 103:409–423
  1. Iwama GK, McGeer JC, Pawluk MP (1989) The effects of five fish anaesthetics on acid-base balance, hematocrit, blood gases, cortisol, and adrenaline in rainbow trout. Can J Zool 67:2065–2073
  1. Jakob P (2011) Small animal magnetic resonance imaging: basic principles, instrumentation and practical issue. In: Kiessling F, Pichler BJ, Hauff P (eds) Small animal imaging. Basics and practical guide. Springer, Berlin, pp 151–164
  1. Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL (2004) Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. Am J Neuroradiol 25:356–369
  1. Kabli S, Alia A, Spaink HP, Verbeek FJ, De Groot HJM (2006) Magnetic resonance microscopy of the adult zebrafish. Zebrafish 3:431–439
  1. Kaufman JA, Ahrens ET, Laidlaw DH, Zhang S, Allman JM (2005) Anatomical analysis of an Aye–Aye brain (Daubentonia madagascariensis, Primates: Prosimii) combining histology, structural magnetic resonance imaging, and diffusion-tensor imaging. Anat Rec A 287:1026–1037
  1. Kim S, Pickup S, Hsu O, Poptani H (2009) Enhanced delineation of white matter structures of the fixed mouse brain using Gd-DTPA in microscopic MRI. NMR Biomed 22:303–309
  1. Kuoni W, Augustiny N, Rübel A (1993) Application of magnetic resonance imaging in reptile medicine. MAGMA 1:61–63
  1. Lannig G, Bock C, Sartoris FJ, Pörtner HO (2004) Oxygen limitation of thermal tolerance in cod, Gadus morhua L., studied by magnetic resonance imaging and on-line venous oxygen monitoring. Am J Physiol Regul Integr Comp Physiol 287:R902–R910
  1. Lannig G, Cherkasov AS, Pörtner HO, Bock C, Sokolova IM (2008) Cadmium-dependent oxygen limitation affects temperature tolerance in eastern oysters (Crassostrea virginica Gmelin). Am J Physiol Regul Integr Comp Physiol 294:1338–1346
  1. Lauridsen H, Hansen K, Wang T, Agger P, Andersen JL, Knudsen PS, Rasmusseun AS, Uhrenholt L, Pedersen M (2011) Inside out: modern imaging techniques to reveal animal anatomy. PLoS One 6:e17879
  1. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407
  1. Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imag 24:478–488
  1. Lee SC, Mietchen D, Cho JH, Kim YS, Kim C, Hong KS, Lee C, Kang D, Lee W, Cheong C (2007) In vivo magnetic resonance microscopy of differentiation in Xenopus laevis embryos from the first cleavage onwards. Differentiation 75:84–92
  1. Liu F, Garland M, Duan Y, Stark RI, Xu D, Dong Z, Bansal R, Peterson BS, Kangarlu A (2008) Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla. Neuroimage 40:148–159
  1. Lohmann JAB, Gassner G (1987) Proton NMR in vivo imaging: a tool for studying embryo development of small organisms. Ann NY Acad Sci 508:435–436
  1. Lohmann JAB, Ratcliffe RG (1988) Prospects for NMR imaging in the study of biological morphogenesis. Experientia 44:666–672
  1. Louie AY, Hüber MM, Ahrens ET, Rothbächer U, Moats R, Jacobs RE, Fraser SE, Meade TJ (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325
  1. Mapelli M, Greco F, Gussoni M, Consonni R, Zetta L (1997) Application of NMR microscopy to the morphological study of the silkworm, Bombyx mori, during its metamorphosis. Magn Reson Imag 15:693–700
  1. Marino L, Sudheimer KD, Murphy TL, Davis KK, Pabst DA, McLellan WA, Rilling JK, Johnson JI (2001) Anatomy and three-dimensional reconstructions of the brain of a bottlenose dolphin (Tursiops truncatus) from magnetic resonance images. Anat Rec 264:397–414
  1. Marino L, Sudheimer KD, Pabst DA, McLellan WA, Filsoof D, Johnson JI (2002) Neuroanatomy of the common dolphin (Delphinus delphis) as revealed by magnetic resonance imaging (MRI). Anat Rec 268:411–429
  1. Marino L, Sudheimer K, Sarko D, Sirpenski G, Johnson JI (2003a) Neuroanatomy of the harbor porpoise (Phocoena phocoena) from magnetic resonance images. J Morphol 257:308–347
  1. Marino L, Sudheimer K, Pabst DA, McLellan WA, Johnson JI (2003b) Magnetic resonance images of the brain of a dwarf sperm whale (Kogia simus). J Anat 203:57–76
  1. Marino L, Sherwood CC, Delman BN, Tang CY, Naidich TP, Hof PR (2004) Neuroanatomy of the killer whale (Orcinus orca) from magnetic resonance images. Anat Rec A 281:1256–1263
  1. Maudsley AA, Hilal SK, Perman WH, Simon HE (1983) Spatially resolved high resolution spectroscopy by “four-dimensional” NMR. J Magn Reson 51:147–152
  1. Metscher BD (2009) MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol 9:11
  1. Michaelis T, Watanabe T, Natt O, Boretius S, Frahm J, Utz S, Schachtner J (2005) In vivo 3D MRI of insect brain: cerebral development during metamorphosis of Manduca sexta. Neuroimage 24:596–602
  1. Mietchen D, Keupp H, Manz B, Volke F (2005) Non-invasive diagnostics in fossils—magnetic resonance imaging of pathological belemnites. Biogeosciences 2:133–140
  1. Mietchen D, Aberhan M, Manz B, Hampe O, Mohr B, Neumann C, Volke F (2008a) Three-dimensional magnetic resonance imaging of fossils across taxa. Biogeosciences 5:25–41
  1. Mietchen D, Manz B, Volke F, Storey K (2008b) In vivo assessment of cold adaptation in insect larvae by magnetic resonance imaging and magnetic resonance spectroscopy. PLoS One 12:e3826
  1. Mooney TA, Hanlon RT, Christensen-Dalsgaard J, Madsen PT, Ketten DR, Nachtigall PE (2010) Sound detection by the longfin squid (Loligo pealeii) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure. J Exp Biol 213:3748–3759
  1. Müller WEG, Kaluzhnaya OV, Belikov SI, Rothenberger M, Schröder HC, Reiber A, Kaandorp JA, Manz B, Mietchen D, Volke F (2006) Magnetic resonance imaging of the siliceous skeleton of the demosponge Lubomirskia baicalensis. J Struct Biol 153:31–41
  1. Natt O, Frahm J (2005) In vivo magnetic resonance imaging: insights into structure and function of the central nervous system. Meas Sci Technol 16:R17–R36
  1. Neustadter DM, Drushel RF, Crago PE, Adams BW, Chiel HJ (2002) A kinematic model of swallowing in Aplysia californica based on radula/odontophore kinematics and in vivo magnetic resonance images. J Exp Biol 205:3177–3206
  1. Novakovic VA, Sutton GP, Neustadter DM, Beer RD, Chiel HJ (2006) Mechanical reconfiguration mediates swallowing and rejection in Aplysia californica. J Comp Physiol A 192:857–870
  1. Null B, Liu CW, Hedehus M, Conolly S, Davis RW (2008) High-resolution, in vivo magnetic resonance imaging of Drosophila at 18.8 Tesla. PLoS One 3:e2817
  1. Ordidge RJ, Connelly A, Lohman JAB (1986) Image-selected in vivo spectroscopy (ISIS)—a new technique for spatially selective NMR spectroscopy. J Magn Reson 66:283–294
  1. Perry CN, Cartamil DP, Bernal D, Sepulveda CA, Theilmann RJ, Graham JB, Frank LR (2007) Quantification of red myotomal muscle volume and geometry in the shorfin mako shark (Isurus oxyrinchus) and the salmon shark (Lamna ditropis) using T1weighted magnetic resonance imaging. J Morphol 268:284–292
  1. Petiet A, Hedlund L, Johnson GA (2007) Staining methods for magnetic resonance microscopy of the rat fetus. J Magn Reson Imag 25:1192–1198
  1. Pohlmann A, Möller M, Decker H, Schreiber WG (2007) MRI of tarantulas: morphological and perfusion imaging. Magn Reson Imag 25:129–135
  1. Poirier C, Vellema M, Verhoye M, van Meir V, Wild JM, Balthazart J, van der Linden A (2008) A three-dimensional MRI atlas of the zebra finch brain in stereotaxic coordinates. Neuroimage 41:1–6
  1. Pouvreau S, Rambeau M, Cochard JC, Robert R (2006) Investigation of marine bivalve morphology by in vivo MR imaging: first anatomical results of a promising technique. Aquaculture 259:415–423
  1. Price WS, Kobayashi A, Ide H, Natori S, Arata Y (1999) Visualizing the postembryonic development of Sarcophaga peregrina (flesh fly) by NMR microscopy. Physiol Entomol 24:386–390
  1. Quast MJ, Neumeister H, Ezell EL, Budelmann BU (2001) MR microscopy of cobalt-labeled nerve cells and pathways in an invertebrate brain (Sepia officinalis, Cephalopoda). Magn Reson Med 45:575–579
  1. Raiti P, Haramati N (1997) Magnetic resonance imaging and computerized tomography of a gravid leopard tortoise (Geochelone pardalis pardalis) with metabolic bone disease. J Zoo Wildl Med 28:189–197
  1. Rasmussen AS, Lauridsen H, Laustsen C, Jensen BG, Pedersen SF, Uhrenholt L, Boel LWT, Uldbjerg N, Wang T, Pedersen M (2010) High-resolution ex vivo magnetic resonance angiography: a feasibility study on biological and medical tissues. BMC Physiol 10:3
  1. Ridgway S, Houser D, Finneran J, Carder D, Keogh M, van Bonn W, Smith C, Scadeng M, Dubowitz D, Mattrey R, Hoh C (2006) Functional imaging of dolphin brain metabolism and blood flow. J Exp Biol 209:2902–2910
  1. Rogers BL, Lowe CG, Fernández-Juricic E, Frank LR (2008) Utilizing magnetic resonance imaging (MRI) to assess the effects of angling-induced barotrauma on rockfish (Sebastes). Can J Fish Aquac Sci 65:1245–1249
  1. Sbarbati A, Leclerq F, Antonakis K, Osculati F (1992) Magnetic resonance imaging of the saccular otolithic mass. J Anat 181:369–732
  1. Schröder L, Faber C (2011) In vivo NMR imaging. Methods and protocols. Methods in Molecular Biology 771. Humana Press, New York
  1. Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 30:10901–10906
  1. Silva AC, Lee JH, Aoki I, Koretsky AP (2004) Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations. NMR Biomed 17:532–543
  1. Skibbe U, Christeller JT, Eccles CD, Laing WA, Callaghan PT (1995) A method to distinguish between chemical shift and susceptibility effects in NMR micoscopy and its application to insect larvae. Magn Reson Imag 13:471–479
  1. Slowik TJ, Green BL, Thorvilson HG (1997) Detection of magnetism in the red imported fire ant (Solenopsis invicta) using magnetic resonance imaging. Bioelectromagnetics 18:396–399
  1. Stecyk JAW, Bock C, Overgaard J, Wang T, Farrell AP, Pörtner HO (2009) Correlation of cardiac performance with cellular energetic components in the oxygen-deprived turtle heart. Am J Physiol Regul Integr Comp Physiol 297:756–768
  1. Takahashi MK, Kato K, Matsushita K, Umeda M, Nishina M, Hori E, Takahashi M, Oshaka A (1989) 1H-MRI and in vivo 31P-MRS study of diseased state of smoky-brown cockroach infected with cockroach densovirus. Jpn J Sanit Zool 40:289–293
  1. Tindemans I, Verhoye M, Balthazart J, van der Linden A (2003) In vivo dynamic ME-MRI reveals differential functional responses of RA- and area X-projecting neurons in the HVC of canaries exposed to conspecific song. Eur J Neurosci 18:3352–3360
  1. Tomanek B, Jasinski A, Sulek Z, Muszynska J, Kulnowski P, Kwiecinski S, Krzyzak A, Skorka T, Kibinski J (1996) Magnetic resonance microscopy of internal structure of drone and queen honey bees. J Apic Res 35:3–9
  1. Ullmann JF, Cowin G, Kurniawan ND, Collin SP (2010) Magnetic resonance histology of the adult zebrafish brain: optimization of fixation and gadolinium contrast enhancement. NMR Biomed 23:341–346
  1. Valente ALS, Cuenca R, Zamora MA, Parga ML, Lavin S, Alegre F, Marco I (2006) Sectional anatomic and magnetic resonance imaging of coelomic structures of loggerhead sea turtles. Am J Vet Res 67:1347–1353
  1. Van de Moortele PF, Akgun C, Adriany G, Moeller S, Ritter J, Collins CM, Smith MB, Vaughan JT, Ugurbil K (2005) B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil. Magn Reson Med 54:1503–1518
  1. Van den Burg EH, Verhoye M, Peeters RR, Meek J, Flik G, van der Linden A (2006) Activation of a sensorimotor pathway in response to a water temperature drop in a teleost fish. J Exp Biol 209:2015–2024
  1. Van der Linden A, Verhoye M, Pörtner HO, Bock C (2004) The strengths of in vivo magnetic resonance imaging (MRI) to study environmental adaptational physiology in fish. Magn Reson Mater Phys Biol Med 17:236–248
  1. Van der Linden A, van Camp N, Ramos-Cabrer P, Hoehn M (2007) Current status of functional MRI on small animals: application to physiology, pathophysiology, and cognition. NMR Biomed 20:522–545
  1. Veliyulin E, Borge A, Singstad T, Gribbestad I, Erikson U (2006) Post mortem studies of fish using magnetic resonance imaging. Mod Magn Reson 1:959–966
  1. Von Brand E, Cisterna M, Merino G, Uribe E, Palma-Rojas C, Rosenblitt M, Albornoz JL (2009) Non-destructive method to study the internal anatomy of the Chilean scallop Argopecten purpuratus. J Shellfish Res 28:325–327
  1. Walter T, Shattuck DW, Baldock R, Bastin ME, Carpenter AE, Duce S, Ellenberg J, Fraser A, Hamilton N, Pieper S, Ragan MA, Schneider JE, Tomancak P, Hériche JK (2010) Visualization of image data from cells to organisms. Nat Methods Suppl 7:S26–S41
  1. Wang LC, Wan DP, Jung SM, Chen CC, Wong HF, Wan YL (2005) Magnetic resonance imaging findings in the brains of rabbits infected with Angiostrongylus cantonensis: a long-term investigation. J Parasitol 91:1237–1239
  1. Watanabe T, Schachtner J, Krizan M, Boretius S, Frahm J, Michaelis T (2006) Manganese-enhanced 3D MRI of established and disrupted synaptic activity in the developing insect brain in vivo. J Neurosci Methods 158:50–55
  1. Webb GA, Belton PS, Gil AM, Delgadillo I (2001) Magnetic resonance in food science: a view to the future. RSC Publishing, Cambridge
  1. Wecker S, Hörnschemeyer T, Hoehn M (2002) Investigation of insect morphology by MRI: assessment of spatial and temporal resolution. Magn Reson Imag 20:105–111
  1. Westheide W, Rieger R (2007) Spezielle Zoologie, Teil 1: Einzeller und wirbellose Tiere. 2. Auflage. Spektrum Akademischer Verlag, München
  1. Westheide W, Rieger R (2010) Spezielle Zoologie, Teil 2: Wirbel- oder Schädeltiere. 2. Auflage. Spektrum Akademischer Verlag, München
  1. Ziegler A (in press) Broad application of non-invasive imaging techniques to echinoids and other echinoderm taxa. In: Proceedings of the 7th European Conference on Echinoderms. Lecture Notes Proceedings. Springer, Berlin
  1. Ziegler A, Mueller S (2011) Analysis of freshly fixed and museum invertebrate specimens using high-resolution, high-throughput MRI. In: Schröder L, Faber C (eds) In vivo NMR imaging. Methods in Molecular Biology 771. Humana Press, New York, pp 633–651
  1. Ziegler A, Faber C, Mueller S, Bartolomaeus T (2008) Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel approach using magnetic resonance imaging. BMC Biol 6:33
  1. Ziegler A, Bartolomaeus T, Mueller S (2010a) Sea urchin (Echinoidea) anatomy revealed by magnetic resonance imaging and 3D visualization. In: Harris LG, Boettger SA, Walker CW, Lesser MP (eds) Echinoderms: Durham. CRC Press, Boca Raton, pp 305–310
  1. Ziegler A, Ogurreck M, Steinke T, Beckmann F, Prohaska S, Ziegler A (2010b) Opportunities and challenges for digital morphology. Biol Direct 5:45
  1. Ziegler A, Mooi R, Rolet G, De Ridder C (2010c) Origin and evolutionary plasticity of the gastric caecum in sea urchins (Echinodermata: Echinoidea). BMC Evol Biol 10:313
  1. Ziegler A, Mietchen D, Faber C, von Hausen W, Schöbel C, Sellerer M, Ziegler A (2011) Effectively incorporating selected multimedia content into medical publications. BMC Med 9:17